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Abstract. In this paper we show that combining knowledge of the ori-
entation of a camera with visual information can be used to improve
the performance of semantic image segmentation. This is based on the
assumption that the direction in which a camera is facing acts as a prior
on the content of the images it creates. We gathered egocentric video
with a camera attached to a head-mounted display, and recorded its ori-
entation using an inertial sensor. By combining orientation information
with typical image descriptors, we show that segmentation of individual
images improves in accuracy compared with vision alone, from 61% to
71% over six classes. We also show that this method can be applied to
both point and line based features from the image, and that these can
be combined together for further benefits. Our resulting system would
have applications in autonomous robot locomotion and guiding visually
impaired humans.

Keywords: Vision guided locomotion, segmentation, image interpreta-
tion, scene understanding, inertial sensors, Oculus Rift, mobile robotics.

1 Introduction

The ability to safely traverse rough terrain is crucial to the survival of almost
all land animals, and is a crucial requirement in order to hunt prey, forage for
food, escape predators, find mates, migrate, and so on. Vision is a very impor-
tant sense for this, and can provide a rich depiction of the surrounding world;
but vision is rarely used in isolation, and sound, scent and touch all provide
important information too. Another very important source of information is the
vestibular system, allowing accelerations and absolute orientations to be per-
ceived independently of visual or other cues [1], and is crucial for balance and
normal locomotion [29]. Vestibular information becomes even more important
when vision is impaired [7], and its absence can lead to problems in interpreting
visual information [30]. There is also some evidence that the central nervous sys-
tem dynamically controls the relative importance of visual and vestibular signals
[7], and that reciprocal inhibition of visual and vestibular signals allows percep-
tion of self-motion in situations with conflicting stimuli [4], showing that there
is significant and important interaction between the two senses.
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There are a large number of applications in computer vision and robotics
where visual information is used to guide wheeled or legged vehicles over un-
known terrain (see for example [8, 20]). However, the use of orientation infor-
mation alongside visual information has been less well studied, despite the ap-
parent biological motivation for doing so. Fusing information from these sensing
modalities offers great potential for assisting in tasks relevant to locomotion, for
example the structural interpretation of image content which we consider in this
work. This is based on the observation that the content of an image typically
changes in relation to its real-world orientation – for example a downward point-
ing camera tends to be looking at the ground, while a sideways facing camera can
expect to see a combination of walkable terrain and obstacles. This information
alone is not sufficient for predicting image content of course, since it disregards
any specific information about the current scenario; but it can serve as a useful
prior for the kinds of structures to be expected, when used in combination with
visual information.

(a) (b)

Fig. 1. Typical results of our algorithm, showing how segmentation results using only
vision (left) can be improved by taking into account the camera orientation (right). In
both examples knowledge of the camera orientation avoids misclassifying vertical walls
as ground (yellow). See Fig. 7 for full color legend. All images are best viewed in color.

Our work develops these ideas and presents the first method, to our knowl-
edge, for combining visual and vestibular information for semantic image seg-
mentation. Using this we show that by combining camera orientation, measured
with an inertial sensor, with visual features extracted from images from the cam-
era, we can achieve improved performance in an image segmentation task. The
ultimate aim of this work is to build a system enabling autonomous locomotion
by legged robots. In order to work towards this goal we focus on developing a
method for guiding humans through urban landscapes. Not only is this a conve-
nient test-bed for evaluating vision guidance algorithms without the constraints
of robot locomotor capability, but it also demonstrates a potential application
in guiding visually impaired humans, where knowledge of the scene structure is
of great importance [28]. With this in mind we developed an algorithm which
segments images into relevant structural regions, such as the walkable ground
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region, impassable obstacles and intermediate surfaces such as stairs, and dis-
plays the result through a head-mounted display unit. Examples outputs of the
algorithm are shown in Fig. 1.

The next section discusses related work in the field. A brief overview of our
method is given in Section 3, followed by Section 4 which describes the data
acquisition process. Section 5 gives full details of how our algorithm works. We
then present extensive results and examples in Section 6, before concluding in
Section 7. Please note that this paper is an extended version of our earlier work
[13], incorporating new results and examples.

2 Related Work

Using inertial sensors has been known to improve performance in a variety of
computer vision tasks. One of these is visual simultaneous localisation and map-
ping, in which the pose of a camera with respect to a map, and the unknown
map itself, must be recovered. The pose estimate given by an inertial sensor can
be fused with that derived from vision to improve robustness [22] and help to
mitigate scale drift [24]. A rather different example from [15] uses inertial in-
formation for blur reduction, by using estimates of the camera’s motion derived
from an inertial sensor during an exposure to guide deconvolution.

The work of Hoiem at el. [14] is more closely related to ours, in that images are
segmented into geometrically consistent regions. As well as visual features, this
uses the position of a segment within the image as a feature during classification,
to learn that sky occurs toward the top of the image, for example – although in
this work the camera is assumed to be in an upright position with no roll. Visual
segmentation can be enhanced using other 3D information – for example using
features extracted from a point cloud to help classify objects in road scenes [26];
or by jointly segmenting individual video frames and labelling structures in a
3D reconstruction from those frames [18]. While the orientation of the camera
may be implicitly included in these methods via the 3D map, this is not directly
investigated, and furthermore is estimated from the image stream itself.

The use of inertial data for terrain classification was investigated by [25],
where the inertial data themselves are used as features to encode the vehicle
vibration and accelerations for different terrains, in order to predict the terrain
type over which the vehicle traverses. This bears some similarity to our approach,
in that inertial data is being used for classification, but it does not attempt to
make use of the relationship between class and pose.

While these show interesting uses of information not directly present in the
image to aid labelling, they are not making use of the information potentially
provided by the camera orientation itself. Similarly, while some of the above
mentioned works use inertial data to aid vision tasks, this is generally in a
purely geometric sense, and they have not exploited the relevance to semantic
attributes in the image. We investigate ways to do this in the following sections.
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3 Overview

In this paper we present an algorithm which takes as input a single image and its
associated 3D orientation, measured with an inertial measurement unit (IMU),
and produces a segmentation of the image into distinct regions, correspond-
ing to classes relevant to the task of locomotion. The classes used are: ground
(walkable), plane (non-walkable, usually vertical), obstacle (non-walkable and
not planar), stairs (walkable with caution), foliage (possibly traversable, maybe
with a different gait), and sky (neither traversable nor obstacular). These are
colored yellow, red, magenta, cyan, green and blue respectively in all examples.
This particular choice of classes is somewhat arbitrary – and our algorithm is
not specific to this choice of course – but we believe this represents a reason-
ably minimal set of necessary classes to facilitate locomotion through different
environments.

To demonstrate the use of orientation in enhancing segmentation, we devel-
oped a relatively simple means of classifying and segmenting images. We seg-
ment an image by describing a grid of points with a collection of feature vectors,
consisting of visual and pose information. These are used to predict the most
likely class for each point with a pre-trained classifier. Since each point is clas-
sified independently, this initial segmentation exhibits much noise. To mitigate
this, we experiment with a Markov random field (MRF) algorithm to enforce a
smoothness constraint across the grid of points; or alternatively a conditional
random field (CRF) to create more detailed segmentations. Using any of these
approaches we show that fusing visual and orientation information can substan-
tially improve segmentation accuracy over using either alone; and crucially, that
orientation information enhances performance beyond using position within the
image as a feature.

We also show that classification of lines detected in the image can be en-
hanced by adding location and orientation features, as well as features encoding
properties of the lines themselves (non-visual features are collectively referred
to as pose features). Finally, we show that combining the results from point and
line classification can improve performance over either in isolation.

The result of our method is a segmentation of the image, comprised of sets
of contiguous points with the same classification which, as Fig. 1 shows, divides
the image into regions appropriate for a navigation task (here showing MRF
segmentation). The basic algorithm does not produce a per-pixel segmentation,
due to the resolution of the grid we use, but every pixel in the image is covered,
and every pixel is used for the description; the CRF segmentation goes beyond
this by giving an individual label to each pixel (see Fig. 12).

4 Data Acquisition

To develop and evaluate the algorithms in this paper, we gathered long video
sequences (totalling around 90 minutes of footage) using an IDS uEye USB 2.0
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camera1 fitted with a wide-angle lens (approximately 80° field of view). This
provides images at a resolution of 640× 480, at a rate of 30 Hz.

Our aim is to use this method to guide humans through outdoor environ-
ments. Therefore, all our data were gathered from a camera mounted on the front
of a virtual reality headset, worn by a person traversing various urban environ-
ments. While walking, the subject saw only the view through the camera. This
was done to make the data as close as possible to what would be encountered in
a real application, both in terms of the camera being mounted in the same way,
and the movements of the head being typical of a human with limited visibility.

The hardware we used for this was the Oculus Rift2 (Dev. Kit 1), which has
a large field of view and sufficiently high framerate (up to 60 Hz). The camera
was mounted sideways, so that the images have a portrait orientation – this is
because the view for each eye is higher than it is wide. We correct for barrel
distortion introduced by the lens to produce an image approximating a pinhole
camera, using camera parameters obtained with the OpenCV calibration tool.3

To gather orientation information we used the inertial sensor built into the
Oculus Rift. This comprises a three-axis accelerometer, gyroscope and magne-
tometer, which are combined with a sensor fusion algorithm to give estimates of
orientation in a world coordinate frame at 1000 Hz. We retrieve the orientation
as three Euler angles, and discard the yaw angle (rotation about the vertical
axis), since in general this will not have any relationship to semantic aspects of
the world. Conversely, pitch and roll are important since they encode the camera
pose with respect to the horizon line, and thus whether the camera is looking
up/down or is tilted. This has an influence on the likelihood of different classes
being observed.

From these videos, a subset of frames are hand picked for labelling, for train-
ing or testing. They are manually segmented into disjoint regions, built from
straight-line segments. Each region is assigned a ground truth label from our
set of classes. This is by nature a subjective task, since image content is often
ambiguous, but the labelling is as consistent as possible. Some truly ambiguous
regions are not labelled, which are omitted from all training and testing.

Examples of ground truth data can be seen in Fig. 2. The labelling is inde-
pendent of the points and lines which are later created in the image. We also
show ground truth segmentations derived from these, in which a grid of points
has been assigned labels according to the the underlying ground truth (where
the blockiness due to the grid is clearly visible). This is the best possible seg-
mentation, against which we evaluate our algorithms in Section 6.

5 Classification and Segmentation

In this section we describe the process by which an image is segmented, according
to either the visual features, pose features, or combinations thereof; and how

1 en.ids-imaging.com
2 www.oculus.com
3 www.docs.opencv.org
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Fig. 2. Example ground truth – the manual labelling of regions (left) and ground truth
segmentation (right).

these features are created in regions surrounding grid points, detected lines, or
both. An overview of the whole system is presented in Fig. 3.
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Fig. 3. This block diagram showing how the system as a whole works. The dotted lines
show what happens when points or lines are used alone; if both are used, their outputs
are concatenated and passed to the meta-classifier.

5.1 Structures

While applying classification at the level of individual pixels is a valid option, this
would be very computationally expensive, and the information at one pixel (e.g.
its color and location) is unlikely to be sufficiently discriminative. Instead, we use
a combination of point and line structures. The points, organized in a grid, are
described by features created from their surrounding pixels. Using a regular grid
of points also makes segmentation with graphical models more straightforward
than using only salient points for example [12]. Lines are detected in the image
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use the LSD line segment detector4 [31] (we discard lines under 6 pixels long
and 3 pixels wide (LSD gives a width value for each line) since these are likely
to be noise). These are used in order to represent high-frequency image content,
and distinctive appearance changes over discontinuities, which would be missed
by the smaller and more localized point features. Feature vectors for lines are
created from surrounding pixels, extending along their length and covering a
region of fixed width on either side.

In order to combine lines with the point-based segmentation, we assign points
to lines if they lie within the region enclosed by the line feature (a point may
be assigned to multiple lines). It is this assignment of points to lines which later
allows line classifications to be transferred to points for segmentation; similarly,
the ground truth label of a line is obtained via the points, whose label in turn
comes from the marked ground truth regions (thus a line’s label vector is the
mean label vector of all points inside the area used to describe it).

5.2 Features

The features with which we classify structures in the image are divided into two
broad categories: visual features and pose features. The former uses information
derived from the image pixels to describe local regions of the image; the latter
comprise other information not directly present in the image, but pertaining to
properties of image structures or the image as a whole.

Visual Features The visual features we use to describe points are histograms
encoding the distribution of gradients and colors in a surrounding square patch.
Histograms of gradients describe the local texture, and are built by first con-
volving the image with gradient filters in the x and y directions, to obtain at
each pixel gradient responses gx and gy. For each pixel we calculate the gradient

angle θ = tan−1
gy
gx

and gradient magnitude m =
√
g2x + g2y. These are used to

build the gradient histogram for a patch by quantising the angles into bins, and
weighting the contribution to each bin by their magnitudes. To encode richer
structure information we create a separate histogram for each quadrant of the
patch and concatenate them together, in the manner of [12].

In addition, color descriptors are created for these patches. These are his-
tograms built in HSV space, which combine a histogram of quantized hue values,
weighted by the saturation (since the saturation represents the degree to which
the hue is relevant), and an intensity histogram. These are included alongside
texture information since color is beneficial when classifying and segmenting
images [14, 17].

As mentioned above, we also perform classification on lines detected in the
image. In order to create a description better suited to lines, for both gradient
and color we create pairs of histograms from the pixels in rectangular regions
either side of the line, and concatenate them. Thus, the gradient descriptor has

4 Code available at www.ipol.im/pub/art/2012/gjmr-lsd
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half the dimensionality compared to the point case (which had four quadrants),
while the color descriptor is twice as long.

Pose Features The most basic of our pose features is simply the position (of the
point, or the line’s midpoint) in the image, where we use the x and y coordinates
(normalized by image size) directly. This is to represent any dependence on image
location which may be exhibited by different classes. Note that the use of location
without orientation was not investigated in the original version of this work [13].

The main contribution of this paper is the use of the orientation of the camera
as a feature. To obtain this, we use the pitch and roll values from the Oculus
Rift IMU, each normalized to the range [0, 1]. The orientation features are always
combined with image location, since otherwise the orientation feature would be
the same for all points in the image: it is the interaction between image position
and camera orientation which gives rise to cues of different types of structure at
different locations in space.

For the line regions only, we also use a shape descriptor, which comprises sim-
ply a line’s length, width, and orientation in the image, each appropriately nor-
malized. This is to add extra information – usually at a larger scale – about the
scene structure which may be ignored by both the visual and location/orientation
features.

5.3 Classification

After extracting features for all points and lines in our training set, each being
paired with a ground truth label, we train a set of classifiers. The classifier we
use for this work is multivariate Bayesian linear regression [3], chosen because
it is both fast to train, and very fast to evaluate for a new input. It is similar
to standard regularized linear regression, except that the optimal value for the
regularisation parameter can be chosen directly, under the assumption that the
data have a Gaussian distribution.

To use it, each class label is represented as a 1-of-K vector (for the K = 6
classes), where dimension k is 1 for class k, and zero otherwise. The classifier
outputs a K-dimensional vector, which after normalization to sum to 1, is treated
as the estimated probability for each class. Prediction is simply a matter of
multiplying the feature vector by the M × K weight matrix (for features of
dimensionality M). Rather than the raw feature vector – which would allow for
learning only linear combinations of the inputs – we use fourth order polynomial
basis functions.

5.4 Combining Information

Different combinations of structures and features lead to different versions of our
algorithm. The most basic is using points only (P) with visual features (V), an
algorithm which we will denote P-V. Similarly, we can experiment using only
location information (which we denote with an ‘X’), orientation information



Fusing Intertial Data with Vision 9

(O), and combinations thereof. For algorithms using line structures (L), we can
also add the shape feature, denoted by ‘S’.

In order to combine different features together, we simply concatenate them
to create one long feature (an alternative method was not found to improve
accuracy, c.f. [13]). These combinations will be expressed as P-VX for example
(points with visual and location features concatenated).

This concatenation is also done for line regions’ features (e.g. L-XOS, which
combines location, orientation and shape features). However, we cannot combine
points with lines by simply concatenating their features, because their features
are created over different image regions. Instead, we retain separate classifiers for
both structures, and combine their outputs by a process known as ‘meta-learning’
(or sometimes ‘stacked generalisation’) [2]. The K-dimensional predicted label
vectors from the two classifiers are concatenated, and treated as a new feature
vector. This is input to a second round of classification, the output of which
is another K-d label vector, representing the final probability estimate for each
class, thus combining information from the points and lines. We run the classifiers
whose outputs we wish to combine (e.g. P-V and L-V) on the training data to
gather example outputs. These predicted label vectors are concatenated and
paired with the known ground truth label for each point, so that the meta-
classifier can be trained (e.g. resulting in PL-VO). Note that this concatenation
is done at the points, where the points receive labels from the lines in which they
lie. Points not within any line regions simply keep their own predicted label.

5.5 Segmentation

The result of any of the above algorithms is a set of points in the image, each
having a predicted label vector, from which we choose the most likely class
assignment as the dimension with the highest value. Since each point is classified
individually, there is no guarantee that neighbouring points will have similar
labels, even if they belong to perceptually similar regions of the image; this is
especially true when using line regions, as adjacent points may be assigned to
different lines.

Markov random field To address this we formulate the problem as a Markov
random field (MRF). This allows us to choose the best label for each point
according to its observation (i.e. classification result), while also incorporating a
smoothness constraint imposed by its neighbours.

We create a grid graph to represent all the points in the image, by connecting
each point to its 4-neighbours. The aim when optimising a MRF is to maximize
the probability of the configuration of the field (i.e. an assignment of labels to
points); this is equivalent to minimising an energy function over all cliques in
the graph [19] (we use up to second-order cliques, i.e. unary and pairwise terms).
A configuration of the MRF is represented as p = (p1...pN ), where pi ∈ L is the
class assigned to point i of N and L is the set of possible labels. The goal is
to find the optimal configuration p∗, such that p∗ = argminpE(p), where E(p) is
the posterior energy of the MRF. We define this as:
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E(p) = α

N∑
i=1

ψd(pi) +

N∑
i=1

∑
j∈Ni

ψs(pi, pj) (1)

where the first term sums over all points in the graph, and the second sums over
all neighbours Ni for each point i. α is a weight parameter, balancing the effects
of the data and the smoothness terms. The unary and pairwise potentials are:

ψd(pi) = ‖pi − ci‖
ψs(pi, pj) = VijT (pi 6= pj)

(2)

pi denotes the label pi represented as a 1-of-K vector, and ci is the K-d
output of the classifier (thus taking into account the predicted probability for
all the classes). T (.) is an indicator function, returning 1 iff its argument is true,
and Vij is a pairwise interaction term, controlling the degree to which label dis-
similarity is penalized at sites i and j. This is set to Vij = β −min(β, |mi −mj |),
where mi is the median intensity over the patch at point i. This penalizes dif-
ferences in label more strongly between points with similar appearance, in order
to adapt the segmentation to the underlying image contours. We set the param-
eters to α = 60 and β = 90 empirically based on observations on the training
set (note the pixel intensities are in the range [0, 255]). We optimize the MRF
using graph cuts with alpha-expansion5 [6]. After optimising the MRF we per-
form connected-component analysis to recover the segments. Examples of results
before and after MRF segmentation can be seen in Fig. 12.

Conditional random field We also describe an alternative way to segment the
image, using a conditional random field (CRF). CRFs have an advantage over
MRFs in that they model the conditional distribution of the labels with respect
to the features, rather than the full joint distribution. This means an accurate
conditional model can have a much simpler structure than a fully generative joint
model [27]. Recent advances allow for extremely efficient CRF optimisation, so
much so that it is now possible to use a fully-connected graph, as opposed to
the grid-structured graph described above, connecting every pixel to every other
pixel. To do this we use the algorithm of Krähenbühl and and Koltun6 [17]. For
the unary potential at pixel i and label k we use:

Uik =

{
−ln(p+

ki) if point i has a label
−ln( 1

K ) otherwise
(3)

where x+ is the value of x if it is greater than zero (zero otherwise), and pik

is the kth element of the K-d probability vector predicted at point i. Since
the CRF is defined over every pixel, most nodes will not have an initial label.
The inference algorithm is otherwise used unchanged, except we doubled the
standard deviation of the color-independent term, as we found this to improve
performance.

5 Using the ‘gco-v3.0’ code at vision.csd.uwo.ca/code
6 Using code available at www.philkr.net/home/densecrf
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6 Results

To evaluate our algorithms, we gathered two datasets as described in Section 4.
All data were obtained from the same camera, having a (rotated) resolution of
480× 640, and were corrected for barrel distortion due to a wide-angle lens.

The first dataset was designated the training set, and contained 178 manually
labelled images. This set was used for cross-validation experiments, to demon-
strate the claims made above. The second set of 156 images was the test set,
which came from different video sequences recorded in physically distinct loca-
tions to the training set. This was done to verify that the algorithms generalize
beyond the training set, and to show example images (all examples in the paper
come from this set). All our labelled data are available online.7

Our algorithm has a large number of parameters which will effect its oper-
ation. The most important ones are described here, with typical values given.
The grid density (distance between points) was set to a value of 15 pixels (mak-
ing a grid of approximately 30 × 40 points), to give a compromise between an
overly coarse representation/segmentation, and the quadratic increase in com-
putational time for denser grids. The patches around every pixel, from which
visual features are built, were squares of side 20 pixels. The width of line regions
was set to 30. The basic gradient histogram was 12-d, making the concatenated
quadrant feature on points 48-d; and color histograms had 20 dimensions each
for the hue and intensity parts. As described earlier, location and orientation
features had two dimensions each, while line shape features have three.

These parameters were set to values which appear sensible or are supported
by related literature. However, we make no claim that these were the optimal
parameters, and much further tuning could be done, although the best settings
would depend on the dataset used. We emphasize that this does not alter the
central claims of this work, i.e. that making use of orientation information, us-
ing either points or lines, can improve segmentation. All parameters were kept
constant across evaluations, so all results are relative.

6.1 Cross-Validation

We begin with results obtained through cross-validation on our training set. This
was done by running five independent runs of five-fold cross-validation on the
data (to mitigate artefacts due to particular choices of training/test splits). For
comparison we use classification accuracy, i.e. the average number of times a
point was assigned the correct class. Segmentation was evaluated point-wise, i.e.
looking at every point individually, since for the time being we are not concerned
with the issue of true segments being wrongly split or merged. We first analyse
the performance of the algorithms without the benefits of segmentation: the
MRF and CRF are not used here, and we directly used the labels assigned to
points by the classifiers.

7 Our dataset can be found at www.osianh.com/inertial
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Fig. 4. Adding orientation features to vision features for points. All error bars show a
95% confidence interval.

First, we ran an experiment to evaluate classification using only points, with
various combinations of vision and pose features. The results are shown in Fig.
4. The bars indicate the average accuracy over all the runs of cross-validation,
and the error bars are drawn to show a 95% confidence interval, based on the
average standard error over all runs of cross-validation.

Using vision features alone (P-V) provides a reasonable baseline perfor-
mance. We ran experiments using only the location feature (P-X) or location
plus orientation (P-XO) – as one might expect, these perform much worse than
using only vision, since no image information is actually used. Nevertheless, it is
encouraging to see that adding orientation already improves the accuracy, and
it can be surprising what orientation alone can tell us about what an image is
expected to contain, as we will show in the next section.

One of the key results of this paper is that combining vision with orientation
information (P-VXO) is significantly better than using vision alone. Crucially,
we also show that while adding image position as a feature (P-VX) does give
some improvement (as per [14]), it is the combination of inertial information
with image location which gives the largest increase. This was not shown in the
original paper [13], but is important in demonstrating that the prior introduced
by where the camera is pointing is relevant to classification.

The next experiment was the same as the above, but for line regions instead.
Note that these evaluations were done using the points which were assigned
labels from classified lines, not on the lines themselves (points not in lines were
excluded from the evaluation). As shown in Fig. 5, we tested the use of line
location (L-X) and shape on their own (L-S), in combination (L-SX), and
combined with orientation (L-SXO), again showing the increased performance
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Fig. 5. Using orientation with vision features for lines.

when using orientation. When combining with visual information (L-VSXO),
we show that this is superior to using visual information alone, or even visual
information with shape and location (L-VSX), once again demonstrating that
the addition of orientation information is of primary importance, and is what
allows us to obtain significantly better classification rates.

Finally, we investigated the effect of combining point and line features. Figure
6 first shows both point and lines separately, using only vision features (the same
results from the two previous graphs), then the result obtained when combining
both point and line classification (PL-V). It can be seen that this improves
performance compared to using either structure in isolation. We then see the
same trend when adding location, orientation and shape information: the graph
shows the results of points and lines individually with the full set of features
(once again the same as the previous graphs), and finally the result using both
structures and all features (PL-VSXO). This results in an improved accuracy,
suggesting that combining information from multiple types of patch/region is
indeed beneficial, albeit by a smaller margin than the above experiments.

In Fig. 7 we show a confusion matrix, obtained as the mean confusion ma-
trix over all runs of cross-validation, using the full algorithm PL-VSXO. The
diagonal is pleasingly prominent, though there is significant confusion between
stairs and ground (when the true class is stairs), which is somewhat unfortunate
from a safety point of view. Vertical surfaces also tend to be confused with other
obstacles and foliage, which is less of a concern. For our task, ground identifica-
tion is perhaps the most important criterion, which appears to be the strongest
result.
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Fig. 6. Combining predictions from both points and lines.
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Fig. 7. Confusion matrix over all runs of cross-validation, for complete PL-VSXO
algorithm. Rows correspond to the true classes, while columns represent the predicted
classes. Colors correspond to those used through all segmentation examples.



Fusing Intertial Data with Vision 15

6.2 Independent Data and Examples

After the cross-validation experiments, we trained sets of classifiers correspond-
ing to different variants of the algorithm, using the training set above (plus copies
obtained by reflecting across the vertical image axis). We used these to evaluate
performance on the independent test set. Results are shown in Table 1. This
confirms the important result of the paper: that combining orientation infor-
mation is beneficial, exhibiting around 10% increase in overall accuracy. Adding
line information did confer a further improvement, although this was only slight.
We also show results after applying MRF and CRF segmentation, both of which
increased accuracy by a few percent.

Algorithm Accuracy MRF CRF

P-V 61.0 % 64.7 % 63.1 %
P-VXO 71.1 % 73.8 % 72.2 %
PL-VSXO 71.5 % 74.6 % 72.5 %

Table 1. Comparison of the different algorithms on independent test data. Using a
MRF to smooth away spurious local detections increases accuracy slightly in all cases;
a fully connected CRF does not give better performance than the MRF as measured
here, but gives more detailed segmentation.

We now show example results taken from the test set, showcasing the dif-
ferences between the algorithms presented above and demonstrating what they
are capable of. In all example images in the paper (except Fig. 12), the MRF
segmentation has been run, to remove noise and give a tidier segmentation.

(a) (b)

Fig. 8. Example results, showing segmentation using only vision features (left) and
combined with orientation features (right). See color legend in Fig. 7.

First, Fig. 8 shows side by side examples of the basic vision version (P-V),
and the effect of adding pose information (P-VXO). In (a), the building façade
is partly mistaken for the ground by the visual features, whereas knowing the
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camera is pointing upwards corrects this. In (b) the miss-classification of the
road as stairs is also corrected.

In the next example (Fig. 9) we show the effect of adding line classifications
to the points-only segmentation, in both cases using all visual and pose features
(P-VXO, PL-VSXO, respectively). These examples show how the information
gleaned from the lines can aid segmentation, for example by disambiguating
stairs and planes, or finding non-planar objects. However, as our results below
will show, lines can sometimes be detrimental.

Fig. 9. Examples showing how adding line classifications (centre) in conjunction with
point features (P-VXO, left) can help improve segmentation (PL-VSXO, right).

It is interesting to see what effect the orientation features have, independently
of the vision features, so in Fig. 10 we show results generated using P-XO and
PL-XOS, i.e. there are no visual features at all being used in these segmentations
(image information is being used only for line detection). Figure 10(a) appears
to be correctly segmented, but only because this is a common and rather empty
configuration of ground and walls; whereas the cars in (b) are obviously ignored.
(c) is interesting since it shows that with the camera looking down at a certain
angle, stairs are predicted – in this case correctly. This raises the interesting
issue that stairs are predicted here not just because they are likely to be below
the viewer, but because the viewer is likely to look downward when walking up
stairs. In 10(d) and (e) the use of lines has altered the segmentation, to give
the impression it is seeing the bollards and the sky (the points assume there
is sky above, but lines even at such a height are rarely labelled as sky in the
training set). In (f) the lines themselves are shown, and it can be seen how their
orientation in the image has an effect, since the bollards and paving stones are
classified differently, despite being at around the same image height.



Fusing Intertial Data with Vision 17

(a) (b) (c) (d) (e) (f)

Fig. 10. Example segmentations using only orientation information features – points
only (a-c) and points with lines (d-f). (f) shows the lines themselves, showing the effect
of the lines’ orientations within the image, aiding detection of vertical posts.

More examples are shown in Fig. 11. Here, we show the input image for clar-
ity, plus the ground truth segmentation. The contributions from vision (P-V),
orientation (P-VXO), and lines (L-VSXO) to the final segmentation (PL-
VSXO) are shown. Figures 11(a) and 11(b) again show orientation information
being used to improve classifications, the latter being an interesting example
where adding lines improves segmentation even in the presence of motion blur.
Note that the different orientations of the camera, such as in (c) and (d), illus-
trates why using only position in the image as a prior is inferior.

The segmentation in Fig. 11(e) also benefits from classification of lines along
the steps. Similarly in Fig. 11(c) lines help to correctly identify the step-edges,
but the step faces are classified as ground. In a way this is correct, since stairs are
made up of periodic walkable regions, but this result would be marked mostly
incorrect compared to our ground truth, which is labelled at a coarser resolution.
This echoes our comment in Section 4 about the world being ambiguous; but
also that some regions may belong to multiple classes simultaneously at different
scales.

The example in 11(g) also shows orientation information being used to cor-
rectly identify the non-ground surface; however, the addition of lines in this case
degrades the result. The final two rows show examples where our augmented
algorithms fail to provide any benefit. In 11(h), the initial P-V segmentation is
correct, and is unchanged by the addition of orientation or lines (of course, if we
could achieve perfect segmentation, no amount of prior knowledge would help).
On the other hand, this illustrates why it is so important that orientation does
not impose a hard constraint on surface identity: even when orientation features
are added, the grass (foliage class) remains. In 11(i), none of the versions of the
algorithm are able to detect either the ground plane or the foliage, perhaps due
to the lower level of illumination.

Our implementation, consisting of single-threaded C++ code running on a
desktop PC (Intel i5, 2.40 GHz), processes one image in around 0.3 seconds on
average (including MRF optimisation). This is below the camera rate, but fast
enough for real-time use when run in a separate thread; further improvements
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Input Ground Truth P-V P-VO L-VSXO PL-VSXO

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Fig. 11. Example results of the various algorithms. After the input and ground truth,
we show the baseline result, of points with only vision features (P-V), followed by
adding orientation information (P-VXO). Detected and vision-classified lines are
shown, before the final result, combining everything (PL-VSXO).
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could be made by parallelising the code or using a GPU. Videos of our code
running can be seen on our website.8

6.3 Detailed Segmentation

Finally, we show results of the algorithm when segmenting using the CRF (see
section 5.5). This is much slower than the MRF (taking over 1s per image),
but since it uses a fully-connected graph of every pixel in the image it results
in much more detailed segmentations. The fully-connected nature of the graph
means that relationships between distant regions of the image can be taken into
account, which can help improve the robustness of the segmentation; however,
this also means that classifications in one region can be influenced by those
in another, so that a region’s label may change as different parts of the scene
come into view. As Table 1 shows, the CRF gives some improvement on the
raw output, but does not (in its current configuration) out-perform the MRF
(note that we are only evaluating using the points, as before, so the evaluation
cannot benefit from the improved resolution). Nevertheless, as the examples in
Fig. 12 show, the dense CRF can give a significantly more precise and detailed
segmentation of the image. It helps to more clearly delineate small objects such
as bollards (Fig. 12(a)) and complex boundaries like trees (c,d), although it can
also introduce some misclassifications (e). Videos of this being run in a threaded
real-time system are also available on our website.

7 Conclusion

We have presented a way of combining information about the real-world orienta-
tion of a camera, obtained through inertial measurements, with more traditional
vision features, for an image segmentation algorithm. This focused on our exam-
ple application of scene segmentation for locomotion in outdoor environments,
but we would expect the results to be applicable to other types of classification,
segmentation, scene understanding and image parsing tasks where the orienta-
tion of the camera is likely to effect the image content. We have also shown that
adding orientation information is beneficial for line regions; and that combining
points and lines in a similar manner can lead to some further improvement.

Our experiments used a comparatively basic design of segmentation algo-
rithm to highlight the effect of using extra prior information. While we have
also experimented with using more advanced segmentation techniques, the CRF
segmentation took as input our classified image. An interesting avenue of fur-
ther research would be to combine the orientation prior with the visual features
within the graphical model framework [27], to make use of the graph structure
at the classification stage too.

Other future work will look at ways of using this method with other sources
of information, for example making use of temporal information to enforce con-
sistency across frames, or to combine with depth and 3D data.

8 Videos available at www.osianh.com/inertial
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Input Pointwise MRF CRF

(a)

(b)

(c)

(d)

(e)

Fig. 12. This shows the result of the pointwise classification before any segmentation
or smoothing (second column). The MRF reduces noise by imposing a smoothness
constraint, and groups together points with the same class (third column). We also
show results using a dense fully-connected CRF (fourth column), which assigns a label
to every pixel using the pointwise result as input.
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17. Krähenbühl, P. and Koltun, V.: Efficient Inference in Fully Connected CRFs with
Gaussian Edge Potentials. In: Advances in Neural Information Processing Systems
(2011)

18. Kundu, A., Li, Y., Dellaert, F., Li, F., Rehg, J.M.: Joint Semantic Segmentation
and 3D Reconstruction from Monocular Video. In: European Conf. Computer Vision
(2014)

19. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer-Verlag (2009)



22 O. Haines, D.R. Bull, J.F. Burn

20. Lorch, O., Albert, A., Denk, J., Gerecke, M. , Cupec, R., Seara, J.F., Gerth, W.,
Schmidt, G.: Experiments in vision-guided biped walking. In: IEEE Int. Conf. In-
telligent Robots and Systems (2002)

21. Maimone, M., Cheng, Y., Matthies, L..: Two years of visual odometry on the mars
exploration rovers. J. Field Robotics. 24 (3), 169–186 (2007)

22. Nützi, G., Weiss, S., Scaramuzza, D., Siegwart, R.: Fusion of IMU and vision for
absolute scale estimation in monocular SLAM. Journal of Intelligent and Robotic
Systems. 61, 287–299 (2011)

23. Patla, A.E.: Understanding the roles of vision in the control of human locomotion.
Gait & Posture. 1 (5), 54–69 (1997)

24. Piniés, P., Lupton, T., Sukkarieh, S.,Tardós, J.D. Inertial aiding of inverse depth
SLAM using a monocular camera. In: Int. Conf. Robotics and Automation. (2007)

25. Sadhukhan, D., Moore, C., Collins E.: Terrain estimation using internal sensors.
In: Int. Conf. Robotics and Applications (2004)

26. Gould, S., Fulton, R., Koller, D.: Combining appearance and structure from motion
features for road scene understanding. In: British Machine Vision Conf. (2009)

27. Sutton, C., McCallum, A.: An introduction to conditional random fields for rela-
tional learning. Introduction to Statistical Relational Learning. 93–128 (2006)

28. Tapu, R., Mocanu, B., Zaharia, T.: A computer vision system that ensure the
autonomous navigation of blind people. In: Conf. E-Health and Bioengineerin (2013)

29. Vidal, P.P., Degallaix, L., Josset, P., Gasc, J.P., Cullen, K. E.: Postural and loco-
motor control in normal and vestibularly deficient mice. The Journal of Physiology.
559 (2), 625638 (2004)

30. Virre, E.: Virtual reality and the vestibular apparatus. Engineering in Medicine
and Biology Magazine. 15 (2), 41–43 (1996)

31. Von Gioi, R.G., Jakubowicz, J., Morel, J., Randall, G.: LSD: A fast line segment
detector with a false detection control. IEEE Trans. Pattern Analysis and Machine
Intelligence. 32 (4), 722–732 (2010)


