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Abstract: Outdoor urban scenes typically contain many planar surfaces, which are useful in tasks such as scene recon-
struction, object recognition and navigation. Planar constraints are especially useful when only a single image
is available, though the lack of 3D information makes finding them difficult; but a number of cues – such as
rectangular shapes, edges, and appearance – can make this possible. We develop a method to determine if
regions in an image are planar and find their orientation; motivated by how humans use their prior knowledge
to help interpret new scenes, this is done by learning from a training set of examples. In contrast to previ-
ous methods which often rely on rectangular structure, this allows our method to generalise to a variety of
outdoor environments, without relying on restrictive assumptions such as a Manhattan-like world or a camera
aligned with the ground plane. From only one image, our method is able to reliably distinguish planes from
non-planes, and estimate their orientation accurately; this is fast and efficient, with application to a real-time
system in mind.

1 INTRODUCTION

We address the problem of detecting planes in a sin-
gle image, and estimating their 3D orientation. Pla-
nar structures are useful because man-made urban en-
vironments tend to be dominated by them, allowing
compact representation of 3D scenes (Bartoli, 2007)
and more efficient robot navigation (Gee et al., 2008).
The ability to discover planes from only a single
image would be beneficial in tasks including image
understanding (Saxena et al., 2008), reconstructing
3D models (Sturm and Maybank, 1999), and object
recognition (Hoiem et al., 2007); or could be com-
plementary to multi-view information in situations
such as wide baseline matching (Mičušı́k et al., 2008),
and in robot mapping where estimating geometry in
real-time is difficult (Martı́nez-Carranza and Calway,
2010).

The lack of depth information makes understand-
ing single images challenging, since any number
of 3D scenes could have produced the image; for-
tunately, monocular cues exist which constrain the
possible 3D configurations. Use of vanishing lines
(Košecká and Zhang, 2005) and rectangular structures
(Mičušı́k et al., 2008) are popular approaches, where
the presence of regular, orthogonal structure (such as
window frames) enables the geometry to be inferred.
However, this can only work in scenes which contain
such regularity; and even then, requires accurate de-
tection of lines, which can be difficult to do reliably
in general scenes.

Motivated by the way humans appear able to un-
derstand scenes from a single view without explicit

geometric reasoning (Howe et al., 2006), we take an
approach which exploits prior knowledge by learn-
ing from a training set (figure 1). This is inspired by
techniques such as (Hoiem et al., 2007) and (Saxena
et al., 2008), which take a machine-learning approach
to interpreting single images, and so do not depend
on explicit geometric properties. Our intention is to
learn the relationship between plane structure and ap-
pearance, so that regions of the image are classified as
planar if they correspond to structures such as build-
ing façades, pavements, and even stone walls, and an
estimate is made of their 3D orientation relative to the
camera; or classified as being non-planar for images
of foliage, vehicles, and so on. We do this using basic
feature descriptors in a bag of words representation,
modified to include spatial information, so that we
may find relevant training examples. Unlike (Hoiem
et al., 2007) we assign an actual orientation estimate,
rather than a coarse classification, and do not require
assumptions about the camera pose.

We show that the method is able to accurately sep-
arate planes from non-planes, making a sufficiently
confident decision in around 90% of cases, of which
the correct class is predicted with 90% accuracy. For
those regions correctly deemed to be planar, their
orientation is predicted with a mean error of around
14° (between the estimated and true normal vectors).
Since we do not rely on vanishing lines or rectangular
structure, the method is applicable to a wider range
of scenes. We also show that the method performs
well in new environments by testing on an indepen-
dent data set. The method is efficient and fast, being



Figure 1: For a given image region (left) our algorithm classifies them as planes and estimates their orientation (centre) by
finding training examples with similar orientation (right).

able to process and make a decision for a new region
in much less than one second, though no code opti-
misation has been attempted. Presently we consider
only the classification and orientation of regions, and
assume a suitable area of the image is given as input;
we leave automatic segmentation of an image for fu-
ture work.

1.1 Overview

Our approach is summarised as follows. To learn
the relationship between appearance and structure, we
gather a database of manually labelled training ex-
amples. While anything can be considered planar
at some level, for our purposes a planar region is
one which is clearly planar on the scale of the im-
age in question, so that it would be useful for the
tasks described above. To classify regions (plane or
non-plane), and estimate orientation (normal vector),
we use a K-Nearest Neighbour classifier to select the
most ‘similar’ examples. To achieve this, we must
decide how to represent image regions, and how to
measure the distance between them.

We base our representation on local image de-
scriptors, corresponding to histograms of oriented
gradients extracted at salient points across a region.
These are not informative enough to predict the orien-
tation of the underlying plane, so we accumulate in-
formation from across the region using a bag of words
approach, where individual words represent basic vi-
sual primitives, and it is their combination which al-
lows us to do classification. In order to deal with dif-
ferent appearance corresponding to the same orien-
tation, we use a variant of Latent Semantic Analysis
(Deerwester et al., 1990), which also serves to reduce
the dimensionality of the representation. This takes
the word histogram and creates a more compact rep-
resentation in terms of ‘topics’.

The occurrence of topics can discriminate planes
from non planes and estimate orientation, but perfor-

mance is improved by also considering their spatial
configuration in the image. We represent spatial in-
formation by using a spatiogram (Birchfield and Ran-
garajan, 2005), which is a higher-order generalisation
of a histogram, adding a mean and covariance for each
bin. Comparison of regions using spatiograms signif-
icantly improves performance by retrieving more rel-
evant neighbours for a test region. As far as we aware,
using a spatiogram with a bag of words representation
is novel.

Section 2 discusses related work concerned with
finding planes in a single image. In section 3 we dis-
cuss the details of the method, including an explana-
tion in section 3.4 of how spatiograms are created and
compared. Our results in section 4 discusses the ef-
fect of different parameter choices, and shows that the
method distinguishes planes from non-planes and re-
liably predicts their orientation in a number of differ-
ent situations. We conclude in section 5 and outline
directions of future work.

2 RELATED WORK

In general, planes have proven to be useful for 3D
reconstructions (Bartoli, 2007), interactive modelling
(Sturm and Maybank, 1999), and in visual map-
ping, for example to simplify the scene structure
(Gee et al., 2008) and perform higher-level reason-
ing (Wangsiripitak and Murray, 2010). We describe
a few important examples of single-image methods
for finding planar structure, which use appearance in-
formation from the image as opposed to any 3D or
multi-view information.

2.1 Single Image Geometry

A standard way to obtain geometry from a single im-
age is the use of vanishing points (Criminisi et al.,



2000). One prominent example is (Košecká and
Zhang, 2005), which relies on the orthogonality of
planes to robustly group lines into three orthogonal
directions in outdoor images. Rectangle hypotheses
are formed from which the pose of the camera can be
recovered, and used to make a simple reconstruction
of the scene. Related is (Mičušı́k et al., 2008), which
treats rectangle detection as a labelling problem on
vertices and edges, and apply this to wide baseline
matching by using the planes’ orientation to rectify
images before comparison.

(Barinova et al., 2008) use these ideas to create
visually pleasing reconstructions of urban scenes; us-
ing vanishing points and the horizon, a polygonal line
segment separating the ground from vertical struc-
tures is hypothesised, which completely describes a
simplified scene geometry. Interestingly, a machine
learning approach is taken to identify which line seg-
ments are valid, based on learned examples.

2.2 Learning From Images

Another cue which may be exploited is the distinctive
appearance of certain parts of images. (Torralba and
Oliva, 2002) use the fact that certain types of struc-
ture tend to appear at particular distances, in order to
estimate the overall depth of an image. However, this
method would not be able to estimate accurate depth
for individual sections of an image.

An approach more similar to our own is that of
(Hoiem et al., 2007), in which the orientation of
planes are estimated without requiring obvious rect-
angular structure. This works by classifying ‘super-
pixels’ obtained by image over-segmentation into ge-
ometric classes, which coarsely describe the scene
orientation for each region. These classes limit planes
to being a ‘support’ surface (horizontal), or a left,
right, or front facing vertical surface. A robust
multiple-segmentation algorithm, using features in-
cluding colour, texture, line length and explicit van-
ishing point information, allows homogeneous re-
gions to be created from the initial super-pixels. The
result is a segmentation of the general layout of a
scene, which has been used to create simple ‘pop-
up’ 3D models and as a prior for object recognition
(Hoiem et al., 2006).

(Saxena et al., 2008) focus on depth estimation in-
stead of plane detection, though the two problems are
related. A full depth map for all pixels is estimated,
after training the algorithm on range data from a laser
scanner. Image regions are described by responses
from a set of edge filters and Laws masks; local and
global features represent absolute and relative depth
cues, then a Markov Random Field is used to find

a consistent depth map over the whole image. This
has also been used for 3D model building, both from
a single image and from a sparse set of images, and
to guide a model car by avoiding obstacles (Michels
et al., 2005).

While the above methods show considerable
progress in understanding single images, a number of
issues remain to be addressed. Those which can de-
scribe the scene in terms of oriented planes use the as-
sumption of a regular, ‘Manhattan’ world, which can
be quite limiting. In many situations, such structure
might not be present; and even if it is, image qual-
ity may be poor, and so we cannot rely on good line
extraction. On the other hand, methods applicable
to more general scenes can only obtain very coarse
orientation, or estimate a depth map for every pixel,
which is more computation than necessary for only
finding planes. Below we propose an alternative that
does not need line or rectangle detection or the pres-
ence of vanishing points, and can reliably identify
planes and find their orientation in a variety of scenes,
using the appearance information in the image.

3 METHOD

3.1 Training Data

So that we may learn about planar structure from the
appearance of images, we gather a set of training ex-
amples consisting of planes and non-planes from a
variety of outdoor locations. Images have a resolu-
tion of 320×240 pixels, and have been corrected for
radial distortion. We obtain these using a hand-held
webcam, and by treating this as a standard pin-hole
camera we use the results of standard projective ge-
ometry: refer to (Hartley and Zisserman, 2003) for
more details. The known intrinsic parameters (that is,
principal point, focal length, aspect ratio and skew) of
the camera are encoded by the 3×3 calibration matrix
K.

For each image we mark the region of interest, and
assign them to the plane or non-plane class as appro-
priate. For the plane examples, a ground truth orien-
tation is assigned using an interactive method, which
requires marking corners of a quadrilateral in the im-
age, corresponding to a real rectangle. This defines
two orthogonal sets of parallel lines, whose intersec-
tions define vanishing points v1 and v2 (expressed as
homogeneous 3-vectors), from which the vanishing
line l of the plane is calculated: l = v1×v2. This line
defines a plane through the camera centre parallel to
the scene plane, and whose normal can be obtained
by n = KTl. These regions are the training and testing
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Figure 2: Examples of the training data we use, showing the manually selected region of interest. The orientation of the
planar regions (a)-(d) is shown by superimposing a normal vector; examples (d) and (f) were obtained by warping the original
images.

data for our method, and some examples are shown in
figure 2.

3.1.1 Training Set Extension

To obtain a larger set of examples, we generate more
from our initial marked-up set, by applying various
geometric transformations. First, since the mirror im-
age of a scene is equally plausible, we double our
training set by reflecting all examples about the verti-
cal axis; this has the additional advantage of removing
any bias for left or right facing regions. Furthermore,
using the known pose of the planar regions, we can
render a new view from a different location, giving us
many more examples from different directions. For a
new viewpoint, represented by a rotation matrix R and
translation vector t relative to the original view, we
find the homography H which relates the two views:

H = R+
tnT

d
(1)

where d is the perpendicular distance to the plane (all
defined up to scale). We can use this to warp the orig-
inal image I to create a new image Iw, which ap-
proximates the plane as seen from the new viewpoint.
This is achieved by setting the intensity of each pixel
vw in Iw to the intensity of the corresponding pixel
v = H−1vw in I. The boundary vertices are warped
by multiplying by H, and the normal nw of the warped
region is obtained by nw = Rn. In practice, while al-
most any new orientation can be obtained in this way,
this is limited by the image resolution, so we ensure
that we do not create new views where the region is
too stretched or foreshortened.

3.2 Features

Before creating a bag-of-words representation, we
need to extract a set of basic feature descriptors.
While (Saxena et al., 2008) and (Hoiem et al., 2007)
use banks of filters and features such as colour, we
instead follow more typical object recognition ap-
proaches and use descriptors that describe local orien-
tations and gradients, which seems an important pre-
dictor of planarity and plane orientation.

3.2.1 Feature Descriptor

We use histograms of gradient orientations, calculated
over local patches of the image; this is the basis of
the SIFT (Lowe, 2004) and HOG (Dalal and Triggs,
2005) descriptors, which have found much success in
tasks such as object recognition. However, we empha-
sise the difference between what we intend to achieve
and typical object recognition or tracking: one of the
benefits of SIFT is that it is invariant to a wide range
of deformations, enabling recognition from a range
of viewpoints; but our aim is specifically to determine
orientation, irrespective of the identity of the plane, so
use of SIFT or its variants is not appropriate.

For each patch, we create four gradient his-
tograms, from each quadrant. Each of these has 12 an-
gular bins (weighted by the gradient magnitude, and
interpolating between bins) and is normalised to sum
to 1, giving a descriptor of 48 dimensions (see figure
3). We do this in order to capture some local structure
information and build a richer descriptor.

3.2.2 Feature Scale Selection

In real images, features occur at a variety of scales,
and this is important here since the change in scale
across a surface is a useful cue for its orientation. To
deal with this, we use the Difference of Gaussians
detector (DoG), commonly used as the first stage in
SIFT, which also finds the appropriate scale of points.
This gives an (x,y) location for each point, as well
as a scale parameter σ, which we use to set the

Feature descriptor:

Figure 3: Creating a descriptor: for an image region (left)
we find the gradient angle and magnitude for each pixel,
and create a histogram for each quadrant (right), which are
concatenated to create the final descriptor (bottom).



width ω of the patch to create the descriptor, setting
ω=max(σ,10) and discarding patches where σ≥ 60,
since descriptors this large no longer represent local
information.

We compared this to single scale feature detec-
tion using FAST (Rosten and Drummond, 2006), and
found DoG detection to be consistently superior (see
the results section). Interestingly, we also found that
DoG detection out-performed FAST for any single
fixed scale, suggesting the blob-like features detected
by DoG are more appropriate than FAST’s corner-like
features.

By selecting the scale for each feature, we are
making the method invariant to scale, rather than ex-
plicitly making use of it. This is advantageous since
it ensures the most appropriate scale is being used at
each location, though it would be interesting to in-
clude such scale information in the representation, to
represent scale change across a region; this is left for
future work.

3.3 Bag of Words

The gradient descriptors capture information about
local areas, but are not sufficient to disambiguate the
structure of the scene, and so we accumulate infor-
mation over the whole region. We use the bag of
words model, adapted from the text retrieval litera-
ture, where documents are summarised simply by the
count of word occurrences, disregarding all syntax
and context. When applied to vision, each image is
analogous to a document, and a discrete set of ‘visual
words’ are the analogue of words or terms in a text
document (Sivic and Zisserman, 2003).

The bag of words representation uses a single vec-
tor x for each image region, where x = {hn|n = 1...N}
is a histogram over N words. These words are found
by quantising each of the D descriptor vectors dd in
the image to a codebook, and so x is calculated using

hn =
D

∑
d=0

δdn (2)

where δdn is 1 iff dd quantises to word n.
To create the codebook, we use 66 images of typ-

ical outdoor urban scenes, representing both planar
and non-planar structures. Descriptors are created
(section 3.2), and we use K-means to cluster these to
create a codebook (typically N = 300; we discuss the
effect of vocabulary size in section 4). Finally, we use
term frequency – inverse document frequency weight-
ing (tf-idf) to create the weighted word vector x′, so
that common words are down-weighted and all doc-
uments are scaled according to their size (Sivic and
Zisserman, 2003).

3.3.1 Topic Discovery

With a large number of possible words, but a limited
number of feature points per image region, the word
vector is both high dimensional and sparse. More-
over, word synonymy (different words characterising
similar structure) cannot be captured with only a word
vector. One way to overcome this is to use Latent
Semantic Analysis (LSA) (Deerwester et al., 1990).
This is essentially a dimensionality reduction tech-
nique, which finds hidden semantic meaning amongst
the words and reduces the word histogram to a vec-
tor of topic weights. Instead of the standard LSA for-
mulation we use Orthogonal Nonnegative Matrix Fac-
torisation (ONMF), because this gives us a topic vec-
tor which has only non-negative components (which
will be important later), and since it allows us to easily
obtain new topic vectors by projection of word vec-
tors.

Like LSA, ONMF performs a factorisation of the
term-document matrix X = [x′0,x

′
1..x
′
M], in which the

element Xn j is the (weighted) number of occurrences
of word n in document j; X is decomposed as X ≈
WH, where W contains the basis vectors of the latent
topic space, and H contains the topic weights for each
document. For M documents and N words, X is N
by M, W is N by T and H is T by M, where T is
the number of topics. Each word vector from X is
approximated by x′i ≈Whi, where hi, a column of H,
is a topic vector, the lower dimensional representation
of x′. To find the topic vector hq for new word vector
during testing, we make use of the orthogonality of W
and rearrange the above to obtain hq = WTxq.

ONMF factorisation has no closed form solution,
so we use an iterative method, which is guaranteed
to monotonically decrease the reconstruction error
‖X−WH‖ and converge to a local minimum (Lee and
Seung, 2001). We use the multiplicative update algo-
rithm proposed by (Choi, 2008), and re-normalise the
columns of W to unit norm after each iteration:

Wnt ←−Wnt
(XHT)nt

(WHXTW)nt
(3)

Htm←−Htm
(WTX)tm

(WTWH)tm
(4)

3.4 Spatiograms

In order to improve the performance of the method
outlined above, we include spatial information about
the distribution of topics, which helps to disambiguate
plane orientations. While the constellation and star
models (Fergus et al., 2005) allow spatial information



to be taken into account, these are very computation-
ally expensive and do not scale well to large numbers
of parts. Instead we use the spatiogram (Birchfield
and Rangarajan, 2005), which is a higher-order gener-
alisation of the histogram – instead of just a count for
each bin, a spatiogram also represents the mean po-
sition and covariance matrix for the points contribut-
ing to each bin; they have been shown to outperform
histograms in tasks such as object tracking (Birch-
field and Rangarajan, 2005) and object detection (Ó
Conaire et al., 2007).

So to replace the word histogram x, we create a
word spatiogram Sword, comprised of a set of triplets

Sword = {sn|n = 1 . . .N} (5)

sn = 〈hn,µn,Σn〉 (6)

where hn is the histogram component as above, and µn
and Σn are respectively the mean and covariance ma-
trices of the 2D coordinates for points contributing to
the histogram bins. We modify the original equations
for calculating the spatiogram to obtain the weighted
unbiased estimate for the covariance:

µn =
1
α

D

∑
d=1

vdδdn (7)

Σn =
α

α2−β

D

∑
d=1

(vd−µn)(vd−µn)
T

δdn (8)

where vd is the 2D point at which descriptor dd is cre-
ated, and α = ∑

D
d=1 δdn , β = ∑

D
d=1 δ2

dn. This allows
us to calculate spatiograms for the tf-idf weighted
word histogram x′ or reduced-dimension topic vec-
tor h, denoted by Sword′ and Stopic respectively, by re-
weighting the contribution of each descriptor dd to
each bin. To create Sword′, replace δdn above with the
quantity

δ
′
dn =

x′n
xn

(9)

where xn and x′n are the values for word n in x and x′
respectively, i.e. δ′dn is the weighting for one occur-
rence of word n in the image. When using topics, in-
stead of contributing to one word only, each descrip-
tor makes a contribution to each topic, and so we cal-
culate Stopic (having length T ) by replacing δdn with
ξdt , which is the contribution of each descriptor dd to
topic t:

ξdt =
x′n
xn

Wnt (10)

where n is the word to which descriptor dd quantises,
and Wnt is the component of the basis vector for topic
t relating to word n. Note that the requirement that

all weights be positive is the reason we use ONMF
instead of LSA.

To use these for classification, we use a distance
metric on the space of spatiograms proposed by (Ó
Conaire et al., 2007). For two general spatiograms S
and S′ of dimension P, this similarity is defined as

ρ =
P

∑
p=1

√
hph′p8π|ΣpΣ

′
p|

1
4N
(
µp;µ′p,2(Σp +Σ

′
p)
)

(11)
We found that using spatiograms significantly im-

proved the performance for both classification and
orientation estimation, suggesting that the relative po-
sition of features in the image is relevant for plane
recognition. We tried spatiograms representing the
image position both with absolute position in the im-
age (thus, like (Hoiem et al., 2007), using position in
the image as a feature), and with respect to the re-
gion position, such that the representation is trans-
lation invariant; we found absolute location to be
slightly beneficial but not essential. It may be thought
that the benefit of spatiograms is simply because they
represent the shape of the pre-segmented region; we
tested this by constraining all regions to be the same
shape, but found that spatiograms still out-perform
histograms.

3.5 Classification

Finally, once we obtain the spatiograms for the image
regions, we can use this to classify them and estimate
an orientation. We opt for a relatively simple means
of classification – the K-Nearest Neighbour classifier
(KNN). We do this to verify that the method is making
use of the features and spatial information described
above, and is not reliant on a sophisticated classifier;
and also because it is easy to interpret the decisions of
the KNN, by looking at which neighbours were cho-
sen (figures 1, 8). The two tasks – classification to
plane or non-plane and orientation estimation – can
be performed simultaneously, by finding the K nearest
neighbours: the class is assigned to the majority class
of these, and the orientation of planes is the mean of
the orientation, expressed as a 3D unit normal vec-
tor. This also allows us to place a confidence value
on the classification, corresponding to the proportion
of neighbours in the majority class; we can then use a
threshold on this to reject regions with uncertain clas-
sification.

We might alternatively separate the two tasks, us-
ing separate classifiers for each, since extracting top-
ics on the planes and non-planes together does not
necessarily find the best set of topics for distinguish-
ing plane orientation. However, when testing without



non-planar examples, we saw no significant change in
orientation accuracy.

4 RESULTS

The data set we use for evaluating the method was ob-
tained from an urban area, as described in section 3.1,
totalling 556 regions. The dataset is first reflected, to
give 1112 basic regions, then warped, giving us a fi-
nal total of 7752. Five-fold cross validation is used,
with the regions grouped to ensure that a test example
can never be matched to a warped version of itself;
we do not test on warped regions since they are not
necessarily realistic test images.

First, we analyse the performance using topic dis-
covery and spatial information as compared to the ba-
sic bag of words model. To do this, we ran the algo-
rithm using the (weighted) word histograms x′ only,
on word-spatiograms Sword′, on topic vectors h only,
and on topic spatiograms Stopic (the full method), for
varying vocabulary size (histograms are compared us-
ing the Bhattacharyya coefficient). Figure 4 shows
both classification accuracy and orientation error –
in general, using topic discovery out-performs using
words directly, and as the vocabulary size increases,
performance using word histograms decreases as they
become increasingly sparse; but performance using
topics remains almost constant, showing that it is able
to extract meaningful information from high dimen-
sional word vectors (we found similar performance
when using varying numbers of topics, from 20 to
100).

Interestingly, the results suggest it may be possible
to use words directly, without topic discovery, with a
very small vocabulary (i.e. 20 words). However, this
makes the method less flexible by constraining it to
use only small vocabularies; and it seems less likely
that small vocabularies would generalise well to new
data sets. We tested this on our independent data set
(see below) and found that in this case, using words
instead of topics decreased mean orientation accuracy
from 17.5° (with standard deviation 15.9°) to 20.5°
(standard deviation 18.1°).

The graphs also clearly show the benefit of using
spatial information, which outperform histograms in
all cases, and appears more robust to change in num-
ber of words.

Next, we show the increase in performance gained
by adding more warped training data (figure 5), while
changing the number of nearest neighbours used. Us-
ing warped data does not improve performance (in
terms of orientation accuracy) when using only topic
histograms; but for spatiograms, using warped re-
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Figure 4: Comparison of words and topics for different vo-
cabulary sizes.
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Figure 5: Orientation estimation for varying K, showing the
difference in performance due to using more (warped) train-
ing regions, when using histograms or spatiograms.

gions improves accuracy by several degrees on av-
erage. This graph also confirms that performance is
improved by using spatial information; and that per-
formance is fairly stable for different K.

We also ran an experiment to verify that using
scale selection for the features is important. To en-
sure that no one scale was the best with scale selection
simply choosing this occasionally, we tested scale se-
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Figure 6: Using the Difference of Gaussians detector to
choose the scale at which descriptors are built outperforms
any single fixed scale, detected with either DoG or FAST.

lection (using the DoG detector) against fixed patch
sizes in the range ω = 5 to 55, detected with both
FAST and DoG; as figure 6 shows, scale selection is
always better than any one scale.

For the remaining tests, we decide upon using a
value of K = 5, with spatiograms using absolute posi-
tion information, feature scale selection, and warped
training examples, on a vocabulary of 300 words, and
we discard regions with a confidence below 0.7. The
results we obtain for this situation is a recall (per-
centage of regions above the confidence threshold)of
91%, classification accuracy of 90%, and a mean ori-
entation error of 14°. Figure 7(a) shows a histogram
for orientation estimation, clearly showing that for the
majority of regions (81%), the error is in the region of
0° to 20°.

To get some perspective on what an error of 14°
actually means, we ran an experiment where the
neighbours are selected randomly. This is a useful
validation of the method, as it shows that our algo-
rithm is finding appropriate features in the appear-
ance of the images in order to find relevant neigh-
bours, as opposed to exploiting an artefact of how the
data are distributed. Comparing to the histogram in
figure 7(b), our method is clearly performing better
than would be expected if it were choosing randomly,
where the mean error is above 40°.

4.1 Independent Data

We also tested the algorithm on an independent data
set, collected from a different urban area, comprising
538 regions. The data set used above was used for
training (including all warped and reflected regions),
with the same parameters. We achieved similar per-
formance – a recall of 91%, classification accuracy of
87%, and mean orientation error of 17.5°. This set
included some challenging examples, such as images
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(a) Distribution of errors for our method, showing the
majority of errors are small.
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(b) Performance when using random neighbours.
Figure 7: Distribution of errors for estimating orientation.

of pavements and roads, since we were careful to in-
clude no images of the ground in the training set (fig-
ures 8 bottom, 9(f),9(g)); and difficult regions such as
textured walls (figures 1,9(d)). Figure 8 shows some
example results of orientation estimation, alongside
their nearest neighbours: while these are quite differ-
ent in appearance, they have a similar orientation, a
quality which allows the method to generalise to new
data. Figure 9 shows further examples, including re-
gions correctly deemed to be non-planar. In these
images, blue (thin) arrows indicate ground truth, and
green (thicker) arrows are the estimated normal, with
cyan circles denoting non-planar classification.

Figure 10 shows cases where the method performs
poorly, both in terms of inaccurate orientation and
misclassification. 10(a) and 10(b) are examples of
the (comparatively rare) case where all the match-
ing planes have very different orientation, something
which requires further investigation. Figure 10(d)
shows one of the more difficult examples, being very
different from anything in our training set. Figure
10(g) may be confused by the railings, vertical trees



Figure 8: Examples of test planes (far left) and their 5 nearest neighbours. Top: a typical building front, matching to neigh-
bours of rather different appearance. Bottom: correct orientation found for a pavement, even though no such images are in
the training set.

and strong horizon line; and it is interesting to note
that 10(h) is incorrectly determined to be a plane,
when the side of a van could arguably be considered
planar.

5 CONCLUSIONS

We have shown that we can reliably determine the
planarity of regions – a classification to a plane or a
non-plane class – and their orientation with respect to
the viewpoint. This is achieved using only the infor-
mation from one image, in the form of gradient-based
descriptors and accumulating information over the re-
gion using the bag of words representation. Improved
performance is achieved by incorporating information
about the spatial distribution of topics across the im-
age region, using a spatiogram. Using a KNN classi-
fier, we demonstrate that the algorithm is capable of
classifying a wide variety of plane and non-plane im-
ages, generalising well to new data; and to be able to
accurately estimate plane orientation, even in exam-
ples devoid of typical structure such as lines, vanish-
ing points and images of rectangles.

Future work will involve improving the classifier,
both to give more accurate results, and also to be more
scalable to larger training sets. Now that we have
shown this kind of single-image plane identification
to be possible, we intend to use our algorithm to auto-
matically segment planar regions from images. How-
ever, since we operate on whole regions as opposed
to using local colour or edge information, this will
require a different approach to typical image segmen-
tation.
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