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Abstract—We investigate a new approach to vision based
mapping, in which single image structure recognition is used
to derive strong priors for initialisation of higher-level primitives
in the map. This can reduce state size and speed up the building
of more meaningful maps. We focus on plane mapping and
use a recognition algorithm to detect and estimate the 3D
orientation of planar structures in key frames, which are then
used as priors for initialising planes in the map. The recognition
algorithm learns the relationship between such structure and
appearance from training examples offline. We demonstrate the
approach in the context of an EKF based visual odometry system.
Preliminary results of experiments in urban environments show
that the system is able to build large maps with significant
planar structure at average frames rates of around 60 fps whilst
maintaining good trajectory estimation. The results suggest that
the approach has considerable potential.

I. INTRODUCTION

In vision based mapping, whether for odometry or simul-
taneous localisation and mapping (SLAM), early and fast
instantiation of 3D features improves performance – not only
in terms of robustness and stability of pose tracking, but also in
providing structural information as soon as it becomes visible.
The latter is especially important in real-time applications
involving navigation and interaction with the environment. For
example, in stereo, and more recently RGB-D camera systems,
point features are initialised with strong depth priors, giving
faster and improved map building, see e.g. [1] and [2]. Also,
careful selection of feature combinations for initialisation can
yield faster convergence of 3D estimates and hence better
mapping and localisation as described in [3].

In this paper we introduce a new approach to speeding up
map building, motivated by the following observation. If we
have knowledge of the geometry of entities such as objects or
structural primitives, and a means of detecting their presence in
a single frame, then it provides a quick way of deriving strong
priors for constructing the relevant portions of the map. In the
extreme, we might envisage instantaneous insertion of known
objects and structural elements, derived, for example, from
scene specific CAD models, thus reducing map building to
model alignment. Our interest, however, is in the more general
middle ground: can we use knowledge of the appearance and
geometry of primitive classes, such as buildings, roads, trees,
etc, to allow fast derivation of strong priors for directing
feature initialisation?

To illustrate, we focus specifically on map building with
planar structure, an extension of point based mapping which
has received attention due to the ubiquity of planes in urban
and indoor environments. Approaches include fitting planes to

Fig. 1. Feature initialisation based on planar priors: for one image (top-
left) while running visual odometry, we use a single-image plane detector to
find planes and their orientation (top-right). These act as priors, enabling
instantaneous initialisation of planes into the map (bottom-left), quickly
building a scene map in terms of 3D planar structures (bottom-right)

point clouds [4], use of Manhattan models [5] and growing
planes alongside points [6], [7]. Although these methods have
shown the potential advantages this can bring, they are also
handicapped by having to allow sufficient parallax (and hence
time) for detecting planes in 3D. This is a good example
of where the early availability of priors would be beneficial.
Indeed, this was nicely demonstrated in the work of Castle et
al. [8], in which specific planar objects with known geometry
were detected and inserted in the map, giving improved
tracking and fast generation of a rich map representation.

We seek to generalise this, aiming to derive strong priors for
the location of planar structure, without reference to specific
planes. For this we use a machine learning algorithm which is
able to recognise planes in single images, based on learning the
relationship between appearance and structure from training
examples [9] – this detects planar regions in images and gives
an estimate of their surface normal. As illustrated in Fig. 1,
for a given frame this provides a prior for both the projected
location and orientation of likely planar structure, which we
can use to initialise planes in the map. We demonstrate this
in the context of an extended Kalman filter (EKF) visual
odometry (VO) system, modifying our plane growing method
previously described in [7].

In the next section we provide an overview of the system,
followed by details of the plane detection and vidual odometry
components in Sections III and IV, then our combined plane
detection visual odometry method in Section V. In Section
VI we present results of experiments in urban environments.



These show that the approach is capable of incorporating larger
planar structures into the map and at a faster rate than previ-
ously reported in [7] – averaging around 60 fps – while still
giving good pose trajectory estimates. This demonstrates the
potential of the approach both for the specific case of planar
mapping and the wider aspect of using image recognition
techniques to generate useful priors for map building.

II. OVERVIEW

Our combined plane detection and visual odometry (PDVO)
method is based on our inverse depth planar parameterisation
(IDPP) VO system described in [7], which recovers the trajec-
tory of a monocular camera by building a map incorporating
point and plane features. This builds planes over multiple
frames by iteratively growing from a set of initial seed points,
so as to find local clusters obeying a planar constraint. When
planes are not available, it falls back to using point features,
courtesy of a common feature representation. The drawback is
that many seed points must be initialised and grown in order
to find those which actually belong to planar structures; plus
there is always the risk of introducing planes in inappropriate
areas, especially when the features are distant, or the camera is
performing pure rotation. The search is performed blind, with
no prior knowledge of where the planes are: this is where a
learned structural prior becomes useful.

The base VO system is modified to use prior information
by using a plane detection method (see section III) to identify
planes, and estimate their orientation, in a single frame. This
is called while the VO system runs, and the result is used
to initialise planes in the map and to direct point feature
initialisation on those planes. This means that arbitrary seed
point growing is avoided, ensuring that costly measurements
are targeted towards likely planar structure, gaining improved
mapping and localisation. The result is that we quickly build
a map consisting only of planes corresponding to semantically
correct regions.

We emphasise that this is a significantly different approach
from other plane-based VO or SLAM systems; in the past
planes are either detected after the map is built [4] or concur-
rently [7], whereas we use the appearance of a single image to
directly find planar structures before they are mapped, and use
this information to guide feature initialisation. As well as being
potentially much faster than methods which need multiple
images, this is exploiting a different type of information – the
cues available in a single image – which are normally ignored
in purely geometry-driven systems.

III. PLANE DETECTION

Planes are detected using the method we introduced in [9]:
this detects planes, and estimates their orientation, from only
a single image – i.e. without using cues such as depth or
optical flow. In contrast to most methods for single-image
perception, it does not rely on specific geometric cues (such as
vanishing lines or characteristic texture distortion), and instead
learns directly from example images using machine learning
techniques; this makes it applicable to a wider variety of
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Fig. 2. Illustration of the plane recognition algorithm, the core of our plane
detection method. Given an image region, it classifies it as plane or not, and
estimates its orientation, using a spatial descriptor based on a bag of words

scenes, and so is appropriate for our application in general
outdoor environments.

The method uses a plane recognition algorithm [10] which
classifies, for a given image region, whether it is a plane or
not, and if so, estimates its orientation (illustrated in Fig. 2).
For a given a region of the image salient points are detected,
and the patch surrounding each is described using gradient and
colour descriptors. A more compact representation is created
by quantising features against a pre-built bag of visual words,
to form histograms of word occurrence (one each for gradient
and colour words). These are combined using a variant of
latent topic analysis [11], which also serves as dimensionality
reduction. In turn these are used to build spatiogram descrip-
tors [12], to represent the spatial distribution of topics, via the
mean and covariance of the points contributing to each topic.
Regions are classified and regressed with Relevance Vector
Machines [13], trained using spatiograms generated for a large
set of manually annotated training data labelled with their class
and orientation. For this we have used a large set of training
data gathered from an urban area separate from the location
in which we test the full system.

Initially, however, the location and extent of potential planes
in an image is not known. Plane detection is achieved by
repeatedly applying the recognition algorithm to overlapping
windows across the image (Fig. 3b), to find the most likely
locations of planes. A robust estimate of the local planarity
and orientation at each salient point in the image is calculated
from the classifications of all the windows in which it lies, as
shown in Fig. 3c – in which the underlying structure of the
scene is apparent. To extract planes from this, a graph over
the points is segmented using a sequence of Markov random
fields (Fig. 3d) – first to separate planes from non-planes,
then to segregate planes from each other using their estimated
orientations. The final step is to apply plane recognition once
more to the planar segments, to re-estimate their orientation
– the result is a set of distinct planes in the image, with an
estimate of their orientation (of course, we know nothing of
their depth or actual 3D position). This algorithm was shown
to work well in a variety of images, being able to generalise
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Fig. 3. The plane detection method we use [9]. For a given image (a), a series of windows are extracted whose individual plane classification and orientation
are estimated (b) (using [10]). This is repeated over the image and produces a local plane estimate (c), which is segmented into individual planes (d) to give
the final plane detection (e) – which consists of a grouping of salient points into planar regions with an orientation estimate

to environments separate from its training set; note that the
method is geared towards outdoor urban scenes, because of the
training data used and the type of features chosen (quantitative
results, and more details, can be found in [9]).

IV. INVERSE DEPTH PLANAR VISUAL ODOMETRY

This work is based on the inverse depth planar parameter-
isation (IDPP) visual odometry system described in [7]. This
uses an EKF framework, operating as in a standard visual
SLAM engine, but with the modification that features that
move out of view are removed from the state. Using inverse
depth parameterisation [14] allows for representation of uncer-
tain, potentially infinite depths within the filter state, without
requiring a separate initialisation. The key difference compared
to [14] is that this representation is extended to planar features,
in a unified framework – allowing both points and planes to be
encoded in the same efficient way. A general planar feature
is described by its state vector mi = [ri,ωi,ni, ρi], which
represents the position and orientation (exponential map) of
the camera, normal vector of the plane, and inverse depth
respectively – a total of 10 dimensions. To represent points,
the normal ni is omitted. Increased efficiency is achieved by
sharing reference cameras between features initialised at the
same time.

A. Plane initialisation and growing

Planar features consist of a collection of points, whose
measurements across subsequent frames allow the plane orien-
tation to be estimated. This begins by initialising a single seed
point for each plane, around which new candidate point fea-
tures are added in subsequent frames – if these are retained, the
plane will grow as more points are added. However because
the plane orientation is estimated using the detected points,
growing must be quite conservative, to avoid converging on
an incorrect normal. Planes which are not able to grow, due
to the lack of co-planar points, are relegated to point features.

B. Keyframes

An important feature of the VO system is the use of
keyframes. These are used to relate the initial camera image
of a planar feature with a reference camera stored in the
state, which allows the current measurements of features to be
related to the original view; measurements of points are made
by warping their image, using the plane parameters, to match
against the keyframe. Not only is the warping-based image

match faster than descriptor-based matching [15], but helps to
discard non-coplanar points: if a point is not on the same plane,
its warped image will become less similar as the viewing angle
changes, so it will not be measured, and eventually discarded.
This keyframe-based representation is very convenient when
performing plane detection, as will become apparent.

C. Parameters

There are a few important parameters which control the
operation of the plane growing algorithm. The minimum
distance between planar points determines how far away new
points are added to the plane, measured in the keyframe (this
is set to a value of 12 pixels). A related parameter is the
number of new points which are added to a plane in each
frame (for standard IDPP this is set to 3) – together these two
parameters control the speed at which planes grow. Another
important parameter is the maximum number of measurements
which can be made in one frame (either independent or part
of a plane) which increases map density to the detriment of
frame rate (held at 200).

V. VISUAL ODOMETRY USING PLANE PRIORS

In this section we describe how our plane detection algo-
rithm can be combined with the IDPP visual odometry system
outlined above, to produce a unified system (PDVO) capable
of initialising planes as soon as they are visible.

A. Adding structural priors

The plane detection algorithm is called on the image stored
in a keyframe, and planar features are initialised once the
algorithm completes, each having a seed point corresponding
to the centroid of a detected plane. To avoid overwriting
existing planes, we check that each centroid is above a
minimum distance (set to 30 pixels) of any planar point visible
in the keyframe, and discard the detected plane if it is not.
Crucially, the whole plane is not initialised immediately: while
we have a good prior that a plane exists, measuring the whole
region immediately could lead to errors, if some outliers are
also included. Therefore the same region growing method is
employed, but allowed to proceed at a faster rate, since it can
be more confident that the surroundings are planar – achieved
by increasing the number of new point features added per
frame to 10. The planes are not permitted to grow outside the
bounds set by the plane detector, and any points which do not
conform to the planar estimate are automatically pruned by



the algorithm’s 3D consistency test (see [16]), so minor errors
in the plane detection stage do not cause problems in the map
estimation. No planar features are allowed other than those
detected – the result is a much smaller but more precise set
of planes, corresponding better to where they should be.

The other important piece of information provided by the
plane detector is the orientation of the plane. This is used
to initialise the normal in the filter, and while some error
is expected in the value, it will likely be closer to the
true value than an uninformed default value (planes were
previously assumed to face toward the camera), so will allow
faster convergence of the normal. This will also help ensure
non-planar points are not used for measurements, since as
described above, their warped image will be less similar if the
correct normal is used. This, combined with the computational
savings achieved by limiting plane growing to the detected
regions, allows for a substantial increase in frame rate, which
is important in time critical applications.

B. Execution time

While the plane detector requires only a single frame, it is
not fast enough to run before the next frame is available –
currently it runs at around 0.7 seconds per image. This is not
a problem, since the detection can run in the background, in
a separate processor thread, and the result is used once it has
finished. The keyframe-based nature of the plane mapping is
ideal in this respect, in that the planes can be added directly
to the keyframe in which they were detected, then measured
from the current frame, rather than attempting to reconcile the
plane-detected image with the current camera view. We found
that this delay did not introduce any problems, and was able
to increase the speed of plane acquisition compared to the
undelayed growing method of IDPP (see Fig. 4 in our results
section). We make the most of the separate thread by beginning
again for a new keyframe as soon as the previous iteration
finishes, using the results as soon as they are available.

It could be argued that since it takes the duration of multiple
frames to detect planes from one still image, we should
instead use all of these frames in standard multi-view plane
detection approaches [4], [17]. However, all such methods
depend strongly on the baseline – which is a serious problem
if the camera is not moving or observing distant planes. Our
method, on the other hand, by using a single frame, will work
even when the camera is motionless; and is able to exploit
a different type on information (i.e. appearance) compared to
the geometric plane growing – and so has a distinct advantage
over standard alternatives.

C. Scene representation

To quickly build a planar map of the environment, we
retain the plane estimates provided by the visual odometry,
even when they are no longer being observed (that is, they
have been removed from the filter and do not contribute to
the map estimate); since the visual odometry combined with
plane detection can quickly give fairly good estimates of planar
structures, fixing them in this manner is sufficient to give a

Fig. 4. Comparison of the initialisation of plane features using the original
IDPP method (left) and when augmenting it with plane detection (PDVO,
right). Images of the camera view after 2 (initialisation), 14 (detection ends),
and 46 frames have elapsed are shown, demonstrating that although there is a
delay of many frames while the plane detector runs, the good initial estimate
makes up for this in terms of the number and quality of the resulting planes

coarse scene representation. Although planes which have not
fully converged while in view will be fixed in the map with
incorrect pose, this does not compromise the accuracy of the
rest of the map.

Since visual odometry never attempts to update the whole
map, the accumulation of errors will inevitably lead to drift –
this is a well known problem, especially in monocular visual
odometry when the absolute scale is not observable; existing
methods to reduce drift could be used in conjunction with our
method [18], but that is not the focus of our current work.

VI. EXPERIMENTAL RESULTS

A number of experiments were carried out using videos
of outdoor urban scenes. These were recorded using a hand-
held webcam running at 30Hz, of size 320 × 240 pixels and
undistorted to correct for distortion introduced by a wide-angle
lens. The purpose of these experiments was to investigate what
is possible when using learned planar priors, rather than to
exhaustively evaluate the difference between the two methods.
As such, we tune both methods to work as well as possible by
altering the number of new planar points that can be initialised
at each frame. For IDPP, this is set to 3, for conservative plane
growing, while for PDVO we use a value of 10, allowing
planes to more rapidly fill the detected region.



First we consider the implications of the delay in initialisa-
tion while waiting for the plane detector to run, as explained in
section V, compared to the undelayed initialisation of (seeds
of) planes by IDPP. In Fig. 4 we show the development of
a keyframe over several frames after initialisation in both
methods. The first row shows the initial input image, and the
result of plane detection used to initialise planes in the PDVO
system. Following this are images showing the progression
of plane estimation; it is clear that IDPP, in the left column,
quickly initialises many planes, at many image locations (some
of which are not at all planar); these take some time to grow,
and compete for measurements. When using plane detection,
however (right column), a single plane is initialised at the
centroid of the detected region, and allowed to grow quickly:
even though there was a delay of around 14 frames before the
detector finished, the resulting plane expands rapidly, overtak-
ing those initialised by IDPP in number of measurements and
image coverage. The bottom row shows 3D visualisations of
the planes (this is their status corresponding to the last camera
image shown); the many planes created by IDPP have not
yet attained good poses, while the plane initialised in PDVO
already shows appropriate orientation. More examples of plane
detections acquired during mapping are shown in Fig. 5, and
initialised planes as projected into the VO camera in Fig. 6.

Fig. 5. Examples of plane detection from the Berkeley Square sequence –
showing the area deemed to be planar and its orientation. Note the crucial
absence of detections on non-planar areas; and that multiple planes are
detected, being separated according to their orientation

Next, we compare the two methods on a long video se-
quence, as the camera traverses a large loop of approximately
300 metres, surrounded by houses, with trees on the inside
(the Berkeley Square sequence – it is not actually square,
but the ends should meet). 3D views resulting from the two
methods are compared in Fig. 7; while both have recovered
an approximately correct trajectory and have placed planes
parallel to the route along its length, it is clear in the PDVO
method (right) that there are fewer planes, which tend to be
larger and less cluttered, giving a clearer representation of the
3D environment. Oblique views on the right show this clearly
– compared to PDVO, the planes mapped by IDPP are smaller,
more irregular, and with more varying orientations. We also
show results for another video sequence, taken in an urban
environment surrounded by planes on all sides (the Denmark
Street sequence), shown in Fig. 8. Again, the map created
using our method is more complete and clear than that with
the original IDPP, with fewer and larger planes. Our accompa-
nying video shows more visual odometry with plane detection,
and the 3D map (available at www.cs.bris.ac.uk/˜haines/).

Table I compares statistics calculated from mapping the
Berkeley Square sequence, in order to quantify the apparent

(a) (b) (c) (d)

Fig. 6. VO as seen from the camera. For IDPP, many planes are initialised
on one surface (a), or on non-planar regions (b); whereas PDVO has fewer,
larger planes, being initialised only on regions classified as planes (c,d)

Fig. 7. Some views of the Berkeley Square sequence, showing the original
IDPP (left) and our improved method (right). The top images show a top-
down view of the whole path, while the lower images show oblique views,
illustrating that the PDVO method produces less clutter and larger planes

reduction in clutter. These confirm our intuition that when
using plane priors, fewer planes will be initialised, by avoiding
non-planar regions. Furthermore, the planes resulting from
PDVO are measurably larger, both in terms of the average
numer of point measurements, and number of pixels covered.

As we emphasised earlier, our intention is to show the
potential for using the plane detection method for fast map
building, and not necessarily to produce a more accurate visual
odometry. However, it is interesting to analyse the accuracy of
PDVO compared to IDPP against the areas’ actual geography.
The ground truth was not available for the sequences we use,
but the trajectories can be manually aligned with and overlaid
on a map – as shown in Fig. 9a for the Berkeley Square
sequence, and for the Denmark Street sequence in Fig. 9b.
The latter is a compelling example, and suggests that, under
certain conditions, our method helps to ameliorate the problem
of scale drift (a well known problem for monocular visual
odometry [19]); of course, many more repeated runs would
be needed to quantify this, but we consider these initial tests
to be good grounds for further investigation.

One of our main hypotheses was that by using strong
structural priors, we can make mapping faster by more care-
fully selecting where to initialise planes. Our experimental
results confirm this, shown in Fig. 10, where we compare
the computation time (measured in frames per second) for
both methods, on the Berkeley Square sequence. As previously
reported in [7], the IDPP system achieves a frame rate of
between 18 and 23 fps (itself an improvement on similar
methods running at 1 fps [18]), which is confirmed by this



Method Total planes Points per plane Average area (pixels)
IDPP 205 17.9 521.0
PDVO 52 28.9 1254.4

TABLE I
COMPARISON OF SUMMARY STATISTICS FOR THE IDPP AND PDVO

METHODS, ON THE BERKELEY SQUARE SEQUENCE

Fig. 8. Comparison on the Denmark Street sequence – IDPP (left) again
has more numerous and smaller planes than PDVO (right) (note that the grid
spacing is arbitrary and does not reflect actual scale)

experiment (blue curve). Our method clearly out-performs this,
achieving both a substantially higher average frame rate of 60
fps and being consistently faster throughout the sequence. We
are not aware of existing VO systems running at such high
frame rates for a similar level of accuracy, suggesting that our
use of learned structural knowledge is a definite advantage.
Running at such high speeds is beneficial since it means more
measurements can be made for the same computational load,
which tends to increase accuracy [20], or frees computation
time for global map correction methods [19].

VII. CONCLUSIONS

We have shown that by exploiting general prior knowledge
about the real world, we can derive strong structural priors,
which are useful for fast initialisation of map features. This
was achieved by modifying a plane-based visual odometry
system to use a single-image plane detecion algorithm: by
detecting planes directly from a single frame, they can be
inserted directly into the map, to quickly give a concise and
meaningful representation of the 3D stucture. The maps we
built show it is possible to rapidly extract good planar maps
of scenes – something we hope to develop further, toward
producing fast and accurate plane-based 3D models.

Our preliminary results also show that using a good initial
estimate of the plane locations loads to faster convergence,
and a higher frame rate. By virtue of a more intelligent
initialisation of features, and the freedom to more quickly
grow planes, our method has shown the potential to reduce
drift, which is an important problem for all visual odometry
systems, and so a worthwhile direction of future work will
be to see if as well producing more concise and coherent
maps, using learned structural priors can give a significant
and reliable improvement to the metric structure of the maps.

REFERENCES

[1] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid, “A constant
time efficient stereo slam system,” in Proc. British Machine Vision Conf,
2009.

[2] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in Proc.
IEEE Int Symp on Mixed and Augmented Reality, 2011.

(a) Berkeley Ssquare (b) Denmark Street

Fig. 9. In lieu of ground truth data, the trajectories are manually overlaid on
a map for comparison. While both methods show noticeable drift, the error
for our PDVO method (red) is an improvement on that of IDPP (blue)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

Frame number

F
ra

m
e

s
 p

e
r 

s
e

c
o

n
d

 

 

IDPP

PDVO

Fig. 10. Time (frames per second) for each of the methods (smoothed with
a width of 100 frames for clarity). The mean is also shown for both

[3] A. Handa, M. Chli, H. Strasdat, and A. Davison, “Scalable active
matching,” in Proc. IEEE Int Conf on Computer Vision and Pattern
Recognition, 2010.

[4] A. P. Gee, D. Chekhlov, A. Calway, and W. Mayol-Cuevas, “Discovering
higher level structure in visual slam,” IEEE Trans on Robotics, vol. 24,
pp. 980–990, October 2008.

[5] A. Flint, C. Mei, I. Reid, and D. Murray, “Growing semantically
meaningful models for visual slam,” in Proc. IEEE Int Conf on Computer
Vision and Pattern Recognition, 2010.

[6] J. Martınez-Carranza and A. Calway, “Unifying planar and point map-
ping in monocular slam,” in Proc. British Machine Vision Conf, 2010.

[7] ——, “Efficient visual odometry using a structure-driven temporal map,”
in Proc. IEEE Int Conf on Robotics and Automation, 2012.

[8] R. Castle, G. Klein, and D. Murray, “Combining monoslam with object
recognition for scene augmentation using a wearable camera,” Image
and Vision Computing, vol. 28, no. 11, pp. 1548–1556, 2010.

[9] O. Haines and A. Calway, “Detecting planes and estimating their
orientation from a single image,” in Proc. British Machine Vision Conf,
2012.

[10] ——, “Estimating planar structure in single images by learning from
examples,” in Proc. International Conf on Pattern Recognition Applica-
tions and Methods, 2012.

[11] S. Choi, “Algorithms for orthogonal nonnegative matrix factorization,”
in Proc. IEEE Int Joint Conf on Neural Networks, 2008.

[12] S. Birchfield and S. Rangarajan, “Spatiograms versus histograms for
region-based tracking,” in Proc. IEEE Int Conf on Computer Vision and
Pattern Recognition, 2005.

[13] M. Tipping, “Sparse bayesian learning and the relevance vector ma-
chine,” Journal of Machine Learning Research, vol. 1, 2001.

[14] J. Civera, A. J. Davison, and J. M. M. Montiel, “Inverse depth
parametrization for monocular slam,” IEEE Transactions on Robotics,
vol. 24, no. 5, October 2008.

[15] D. Chekhlov, M. Pupilli, W. Mayol-Cuevas, and A. Calway, “Real-time
and robust monocular slam using predictive multi-resolution descrip-
tors,” in Proc. Int Symposium on Visual Computing, 2006.

[16] J. Martınez-Carranza, “Efficient monocular slam by using a structure
driven mapping,” Ph.D. dissertation, University of Bristol, 2012.

[17] M. Zucchelli, J. Santos-Victor, and H. Christensen, “Multiple plane
segmentation using optical flow,” in Proc. British Machine Vision Conf,
2002.

[18] J. Civera, O. Grasa, A. Davison, and J. Montiel, “1-point ransac for
ekf-based structure from motion,” in IEEE/RSJ Int Conf on Intelligent
Robots and Systems, 2009.

[19] H. Strasdat, J. Montiel, and A. Davison, “Scale drift-aware large scale
monocular slam,” in Proc. Robotics: Science and Systems, 2010.

[20] ——, “Real-time monocular slam: Why filter?” in Proc. IEEE Int Conf
on Robotics and Automation, 2010.


