RECOGNISING PLANES IN A SINGLE IMAGE

Recognising planes in a single image

Osian Haines and Andrew Calway

Abstract—We present a novel method to recognise planar structures in a single image and estimate their 3D orientation.
This is done by exploiting the relationship between image appearance and 3D structure, using machine learning methods with
supervised training data. As such, the method does not require specific features or use geometric cues, such as vanishing
points. We employ general feature representations based on spatiograms of gradients and colour, coupled with relevance vector
machines for classification and regression. We first show that using hand-labelled training data, we are able to classify pre-
segmented regions as being planar or not, and estimate their 3D orientation. We then incorporate the method into a segmentation
algorithm to detect multiple planar structures from a previously unseen image.

Index Terms—Planar structure, single images, recognition, learning.

1 INTRODUCTION

This paper is concerned with the automatic extraction
of 3D structure from single images. While the creation
of 3D models of real-world scenes from image data
has been a topic of interest for a long time, it is usual
for this to involve either multiple views of a scene or
video data, exploiting parallax to obtain information
about scene depth. Inferring depth from only a single
image is much more challenging. However, previous
works have shown that a number of image cues can be
exploited to extract information about depth, shape,
or other 3D structure. For example, vanishing points
can be used to calculate plane orientation [22] [27],
estimate distances [7], measure lengths [12] and con-
struct intricate line models [31]. Shape from shading
techniques allow estimation of surface normals [30],
whilst shape from texture methods exploit distortions
in appearance to give estimates of surface shape [10].

But such methods tend to be rather restrictive in
terms of the images they can deal with, e.g. requiring
‘Manhattan’-like environments with three dominant
orientations in the case of vanishing points [22]. More
recent approaches have therefore explored the poten-
tial for making use of the relationship between image
appearance and structure, learned from examples.
Such methods, based on machine learning techniques,
use information gleaned from a training set to predict
structure in new images, avoiding the need to impose
models on the data. The method described here falls
into this class.

Two prominent existing methods are those of Sax-
ena et al. [32] and Hoiem et al. [19]. The former is
able to recover an approximate depth map for an
image having learned the relationship between image
appearance and ground truth depth maps derived
from laser scanning; this can be used for creating
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virtual fly-throughs in generated 3D models, or for
reconstruction from widely separated image sets [32].
In contrast, Hoiem et al.’s work focuses on segment-
ing an image into areas representing coarse geometric
classes based on labelled image data. It distinguishes
horizontal and vertical surfaces from non planar areas
such as the sky, with the vertical surfaces being further
classified into either forward, left or right facing. The
method can be used to generate ‘pop-up’ 3D models,
or as a prior for object detection [18].

1.1 Contribution

The main contribution here is that we show that as
well as detecting planar structure it is also possible
to estimate 3D orientation using a learning based
method. This is different from the approaches above,
which are either not able to identify actual planar
structures [32], or do not provide an accurate es-
timate of 3D orientation [19]. It therefore sits be-
tween them - detecting planar structure and esti-
mating relative depth via 3D orientation — defined
within a common framework. Our motivation is the
number of applications which would benefit from
early detection and accurate orientation estimation of
planar structure, notably in real-time 3D reconstruc-
tion applications such as simultaneous localisation
and mapping (SLAM), see e.g. [26] [16]. As such,
we make the assumption that we have access to the
camera calibration parameters during training, and
that these remain constant for all train and test data:
it is this consistency which allows us to predict plane
orientation vectors, rather than coarse classifications.
Otherwise, our approach uses only the cues learned
from a labelled training set, and does not require any
other pre-specified priors.

We adopt techniques from machine learning and
image segmentation, including a relevance vector ma-
chine classifier and a Markov random field (MRF)
segmentation algorithm, but combine them in a novel
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way. As well as being motivated by the success of the
methods noted above, the approach is also inspired by
theories of human vision, which suggest that humans
are able to recognise complex structures, even when
stereo or parallax cues are unavailable, by virtue of
their prior experience with the world [11], and a
form of top-down interpretation guided by what they
expect to see [29].

We first describe an algorithm to learn the relation-
ship between appearance and planar structure from
examples, which enables the recognition of planes in
individual image regions and the estimation of their
orientation. This is done using features built from
gradient and colour descriptors, within a bag of visual
words model, and we use relevance vector machines
for classifying planar structure and regressing orienta-
tion. This works on individual, pre-segmented image
regions (so assumes a relevant region of interest has
been defined), giving for each a classification (whether
it is planar or not) and an orientation, expressed as a
normal vector with respect to the camera: we refer
to this as plane recognition. For this baseline recog-
nition algorithm we report classification accuracy of
around 92% and a median orientation error of 10°,
when tested on a test set of image regions gathered
independently of the training data, from a separate
urban location.

Next we use plane recognition within a graph-based
segmentation to detect multiple planes from an image
without prior knowledge of their locations. In contrast
to plane recognition, this stage is able to find planes
and their extent from the entire image, then assign
them each a class and estimate their orientation: we
call this plane detection (see Fig. 1 for examples).
We present two versions of this algorithm: a version
which uses saliency detection to focus on regions of
the image with interesting texture [14], and a second
which uses a regular grid of points, to enable plane
detection using all parts of an image.

The first method is shown to be in general more
accurate, while the second achieves greater coverage
over the scene. Results on data from urban environ-
ments demonstrate that these techniques are effective,
giving an 83.6% classification accuracy and median
orientation error of 16.2° when using salient points,
or an accuracy of 81.6% and orientation error of 16.3°
when using the grid-based method (again on inde-
pendent test data). We believe this constitutes good
performance given the difficulty of the task, especially
considering this is something not achieved before
by other methods — namely recovering an accurate
orientation for large-scale planar structures.

In the next section we review previous work. An
overview of our method is given in Section 3, fol-
lowed in Sections 4 and 5 by details of the recognition
algorithm and segmentation frameworks respectively.
Results of experiments are presented in Section 6,
including a comparison with recent work. Earlier
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Fig. 1. Example results of our algorithm. From images
such as those on the left, we can detect planes and
predict their 3D orientation, as shown on the right.
The two versions of our method segment using either

salient points (top) or a regular grid of points (bottom).
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versions of the work were previously reported in
[15] and [14]; this work brings the two together for
a more coherent exposition, adding results of new
experiments and analysis, and an alternative version
of the method. Further in-depth analysis can be found
in [13].

2 RELATED WORK

Here we discuss examples of prior work on extract-
ing planar structure from single images. This can be
divided into two main categories: methods which
explicitly use geometric properties, such as parallel
lines and texture; and work which aims to recognise
structure based on learning from training examples.

Given two or more sets of parallel lines lying on
a plane, their respective vanishing points uniquely
define the plane’s 3D orientation [17]. Thus, detecting
such line features in an image enables the extraction
of structure, providing they lie on a common plane.
One approach is to detect rectangular structures, such
as windows or doors, which provide orthogonal par-
allel lines in the same plane [22] [27], which can
be used for basic camera pose recovery and wide
baseline matching. However, these methods rely on
orthogonal, Manhattan-like structure, and reliable line
detection, hence limiting applicability.

In shape from texture methods, the deformation of
imaged texture is related to surface shape, to recover
orientation or curvature properties. Work by Garding
[10], for example, uses the visible compression of
texture under projection to determine slant and tilt
for planar surfaces. In such methods as these it is
notable that detection is generally not addressed — it
is assumed that the image contains a single planar
surface.

An interesting crossover between the geometric
methods above, and those that use machine learning,
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is the work of Barinova et al. [1], who use estimation
of the location of a scene’s principal vertical structures
and the horizon line, together with a classification of
line segments to identify horizontal lines. This method
is also able to give an approximate 3D reconstruction
of city scenes, but does not go so far as producing
precise orientation estimates for the resulting planes.

2.1

More recent work has looked at techniques for learn-
ing the relationship between appearance and struc-
ture. A good example of such a technique is by
Torralba and Oliva [35], who estimate overall depth
using knowledge that certain types of structure tend
to appear at particular distances. However, this work
focuses on global scene properties, which is a level of
understanding too coarse for most interesting appli-
cations.

Saxena et al. [32] go further than this by estimating
whole-image depth maps based on training images
labelled with absolute depth. They can create basic
3D models of the scene, built from locally planar
facets, and their comparison to ground truth depth
shows good accuracy. However, the resulting models
do not explicitly represent higher-level structures —
The superpixel segments are all assumed to be locally
planar, and accuracy of planar facet orientations is not
reported. Rather, the focus of the work is to produce
visually plausible renderings of the scene, which are
assessed by human subjects. This is in contrast to the
work we present here, where we explicitly aim to find
large-scale planes in the image, and to assign them an
accurate orientation.

Hoiem et al. [19] describe an approach most similar
to ours, where a variety of texture and colour features,
as well as explicit vanishing point information, are
used to classify planar segments into coarse geomet-
ric classes, distinguishing between support surfaces
(horizontal), and left, right, or front facing vertical
surfaces. This coarse classification is used to produce
a general scene layout, creating simple ‘pop-up’ 3D
models, or as a prior for object recognition.

Their classification of the image into geometric
classes bridges the gap between semantic understand-
ing and 3D reconstruction. However, because ori-
entations are coarsely quantised it means that the
recovered 3D models lack specificity, being unable to
distinguish similarly oriented planes. Moreover, their
requirement that the camera be roughly aligned with
the ground plane, and the use of vanishing point
information as a cue, suggest they are not making use
of fully general information. What we are aiming for,
on the other hand, is a more general treatment of prior
information. The main difference to our presented
method is that they do not offer an estimate of actual
plane orientation, as we do, but quantise the results
into to a small number of discrete geometric classes.

Machine Learning Methods

3 OVERVIEW

Our method consists of two main components: a plane
recognition algorithm; and a graph-based detection
stage. The former takes image regions, classifies them
as either planar or non-planar, and for planes provides
an estimate of their 3D orientation in the camera
coordinate frame. This forms the core element within
the detection stage, which identifies multiple planes
in an image from localised plane recognition results.
Figures 2 and 4 illustrate the key elements in each
component. A summary of each is given below and
full details are given in Sections 4 and 5.

The plane recognition algorithm has three compo-
nents [15]: appearance representation; planar classi-
fication; and orientation regression. To encode ap-
pearance we use a representation which characterises
the distribution of local patterns centred around a
set of points. We use a combination of histograms
of gradients and colour for this, quantised using a
bag of words codebook; followed by dimensionality
reduction using a variant of latent semantic analysis,
to give sets of latent “topics’. The spatial distribution
of the topics over the salient points is then captured
using spatiograms, which are used to train a classifier
to predict whether regions are planar or not, and a
regression algorithm to predict plane normals.

To detect planes in an image [14], we apply the
plane recognition algorithm to multiple overlapping
image regions, giving plane/non-plane classifications
and orientation estimates for each. Points are sam-
pled from across the image and given estimates of
planarity and orientation based upon the regions in
which they lie. This can be used to separate planar
regions from non-planar; we use mean shift cluster-
ing on the set of normals in the image to obtain
the dominant orientations, and use this to separate
distinct planes. Segmentation of individual planes is
then achieved in a graph-based algorithm, using iter-
ative conditional modes, which also allows a degree
of localised smoothing. Plane recognition is then re-
applied to each planar region to obtain an updated
plane orientation estimate. The result is a set of planar
segments, plus points otherwise belonging to non-
planar regions, such as those shown in Fig. 1. We
show results using both a sparse set of salient points,
and a version using a multi-scale grid of points.

4 PLANE RECOGNITION

In this section we describe the plane recognition
algorithm, which classifies image regions as being
planar or not, and for the former provides a 3D
orientation estimate. We emphasise that this works
on individual, pre-segmented image regions only, and
does not apply to the image as a whole; marking the
relevant planar or non-planar image region is part of
the data acquisition process. The main components
are shown in Fig. 2.
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Fig. 2. Main components of the plane recognition
algorithm.

41

We gathered a training set of regions containing pla-
nar surfaces and their orientations, plus examples of
non-planar regions, selected from video sequences
of urban locations. We mark up regions of interest,
labelling them as planar or non-planar as appropriate.
For the planar regions a ground truth orientation is
defined using an interactive method based on vanish-
ing points. Four points corresponding to the corners
of a rectangle lying on the plane in 3D are marked
up by hand and the pairs of opposing edges are
extended until they meet to give vanishing points
in two orthogonal directions. Joining these gives the
vanishing line 1 = vy X vz of the plane, where vy
and vz are the vanishing points in homogeneous
coordinates.

The plane normal can then be obtained from n =
KT1, where K is the 3 x 3 intrinsic camera calibration
matrix [17]. It is this relationship between camera pa-
rameters and plane orientation that makes it possible
to recover accurate plane orientations for new data,
because the relationship between image appearance
and orientation is constant. This requires a consistent
and known camera calibration for all images used,
which is consistent with our intended application area
of SLAM and 3D reconstruction, but makes running
our algorithm on other existing datasets problematic.

Training Set

Fig. 3. Examples of hand-segmented regions and their
ground truth orientation (rightmost image is obtained
by warping).

To further increase the size of training set, we syn-
thetically generate new variations from the marked-
up set, first by reflecting all the regions about the
vertical axis; then we generate examples of planes
with different orientations by warping the regions —
effectively simulating the view as seen by a camera
in different poses [17]. Examples of training data are
shown in Fig. 3.

4.2 Salient Points

An image region will generally contain a large amount
of visual information, as well as potentially less in-
formative blank regions. To create a more compact
representation, and focus on parts of the image which
are more likely to be useful, we select a subset of
salient points in the image around which to concen-
trate further processing. This is achieved with the
difference of Gaussians (DoG) saliency detector [24],
which selects blob-like regions in the image. This
gives a scale as well as a location for each point, which
we found to be beneficial [15]. Note that the image
descriptors are built from the patches around the
detected points, not just at the points themselves, i.e.
we are doing more than labelling individual points.
An alternative method of sampling the image is also
discussed in Section 5.3.

4.3

Image descriptors are created in the region about each
salient point, where the region size is dictated by
the scale returned by the saliency operator. We use
two complementary feature descriptors: the first is
gradient orientation histograms to describe texture,
which consist of histograms of edge orientation, com-
puted by applying edge filters to the image. We create
four histograms per patch, one for each quadrant,
comprised of 12 angular bins covering the range [0, 7),
and concatenated to give a 48D descriptor.

Secondly, we represent colour using RGB his-
tograms, created by concatenating intensity his-
tograms from the red, green and blue channels of
the patch. Each has 20 bins, giving a 60D descriptor.
The importance of colour for classifying structure was
demonstrated by [19], and as we hoped, combining
both types of descriptor gives superior performance to
either in isolation (see Section 6.1.1). However, colour
is not beneficial for estimating orientation, and so
we maintain separate representations for classification
and regression, the former comprising gradient and
colour information, the latter with gradient only.

Image Descriptors

4.4 Bag of Words

To further reduce dimensionality, we represent the
distribution of descriptors in a region using a bag of
words approach [25]. We identify clusters in descrip-
tor space and their centres then form ‘visual words’,
creating a ‘vocabulary’ codebook. Two separate vo-
cabularies are created, to represent the gradient and
colour descriptor spaces — created by running K-
means on a set of 100 representative images. Regions
are then compactly represented by a pair of word
histograms, expressing the occurrence of gradient and
colour words from the respective vocabularies.

Each word histogram, stored in a vector h*ord has
K elements {h}°dk = 1...K}, where K is the size
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of the vocabulary, and these are found by quantising
each of the descriptors at the salient points to the
closest word, i.e. h‘;c"ord = |Ag|, where Ay is the set
of points whose descriptors have been quantised to
cluster (and hence word) k. We also apply term fre-
quency — inverse document frequency weighting [25],
to weight words according to their relative importance
in the corpus.

4.5 Topic Discovery

A problem with the standard bag of words model is
that there is no association between words, and no
way to account for the fact that multiple words may
correspond to the same semantic concept — any two
non-identical words are considered the same distance
from each other. Furthermore, as vocabulary size in-
creases, in order to represent richer environments,
word histograms will become very high dimensional
and sparse, making meaningful comparisons difficult.
A solution to this is to use a latent topic model,
where a set of salient ‘topics” amongst the words in a
corpus are extracted; this can be considered a dimen-
sionality reduction technique, resulting in vectors of
topic occurrence, instead of word histograms. We use
orthogonal non-negative matrix factorisation (ONMF)
[5] for this. ONMF creates a linear model, similar to
that of latent semantic analysis (LSA) [8], and has
the property that new topic vectors can be obtained
simply by matrix projection of word histograms. It
also ensures that all projected topic coefficients are
non-negative (not just the original factor matrices),
which is essential for creating spatiograms (see next
section). Furthermore, ONMF does not require the
rather complicated variational methods or Gibbs sam-
pling necessary for latent Dirichlet allocation [4].
ONMF factorisation is applied to the training set,
by factorising the K x N term-document matrix H"°rd
(whose columns correspond to the word histograms
for the N training set regions) as H""® ~ WH!P¢,
where the columns of W (K x T') are the basis of the
latent topic space (of rank 7, the number of topics),
and H'°P® (7' x N) contains the topic histograms for
each region. The word histogram for region n can then
be approximated by h"°® ~ Wh!°P, where h!%P° is
the nth column of H'P. Since W is constrained to
be orthogonal (in contrast to standard non-negative
matrix factorisation), a topic histogram for a region
can therefore be calculated by projecting its word
histogram into the topic space, i.e. h'P¢ = WThwod,
A further benefit of this topic analysis is that it
allows the combination of information from the two
feature spaces into a single topic space. This can
be done by concatenating the gradient and colour
term-document matrices before running ONME. As
discussed earlier, we use both types of feature for
classifying planes but only gradient features for esti-
mating orientation, so it is necessary to maintain two

topic spaces, for classification and regression. In terms
of implementation, ONMEF factorisation has no closed
form solution and so we use the iterative method
described in [5].

4.6 Spatiograms

Word and topic histograms compactly represent re-
gions so that they may be classified; however, we
found performance to be somewhat disappointing (c.f.
Section 6.1.1). A disadvantage of the standard bag
of words model is that all location information is
discarded — whereas the relative position of features
is likely to be important for characterising planar
structure. While it is possible to include spatial infor-
mation using constellation or star models [9], these
are computationally expensive, and scale poorly to
large numbers of words. Another alternative would be
spatial pyramid models, which build a representation
over multiple locations and scales, but these are better
suited to describing whole images rather than regions,
and require concatenation of descriptors over many
pyramid levels [23].

Instead we use spatiograms as proposed in [3]. A
spatiogram is a generalisation of a histogram, where
each bin contains not only a count but also the
mean and covariance of spatial positions of points
which contributed to it. Spatiograms have been used
successfully for object detection and tracking [28]
using colour and gradient histograms (but not, as
far as we are aware, using bags of words). We use
them here since they are a relatively compact way
of representing the spatial distribution of words or
topics.

Given a word histogram h"°", its corresponding
spatiogram s"° is comprised of a set of K triplets

sword — <h‘”°rd pivord 33wordy sych that
u\;cvord Z Vi, Eword Z v} v
|A ‘ 1€EANE |A ‘_ 1€EAE
)
where v; represents the 2D coordinate of point ¢ and
word

Vi =v; —

Defining spatiograms over topics is a little more
complicated, since topics are not uniquely associated
with a distinct set of points, but rather points are
shared amongst topics according to the contribution
of their assigned words to given topics. This is defined
by the topic space matrix W and thus we can use this
to weight points when computing the spatial char-
acteristics of a topic. Given a topic histogram h'P
its spatiogram s'P° therefore consists of 7' triplets
sloPie — (plopie lopie 53lopiey yvhere the mean and co-
variance are now given by
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— p®° and 5, = S5, % The
weights wy, are given by wy, = Wtkh‘,’c"ord and reflect
both the importance of word k through A} and
its contribution to topic t via Wy, the weights are
normalised to sum to 1 over words. Note that it is
essential that these weights are not negative, which
is why we chose ONMF over the alternatives. Again,
since we have two topic spaces, each region will have
two spatiograms, one for classification and one for
orientation estimation.

To use the spatiograms for classification and re-
gression, we use a similarity measure proposed in
[28]. This uses the Battacharyya coefficient to compare
spatiogram bins, and a measure of the overlap of
Gaussian distributions to compare their spatial distri-
bution. For two spatiograms s# and s” of dimension
M, this similarity is defined as

where vi = v;

M
pas = >\ hARBSTISASEIEN (i B 2(SA+55))
m=1

®)
Following [28], we use a diagonal version of the
covariance matrices X, since it simplifies the calcu-
lation.

4.7 Classification and Regression

For classification and regression we use the relevance
vector machine (RVM) [34] — a sparse kernel method,
conceptually similar to the well-known support vector
machine (SVM). Like SVMs, once trained, an RVM
uses only a small subset of data, making it very
fast even for very large training sets. This is impor-
tant in our application since for plane detection it
must be applied several hundred times per image.
Furthermore, unlike the SVM, it gives probabilistic
outputs, as opposed to hard decisions, which also
proves important for plane detection.

Full details of RVMs can be found in [34]. In sum-
mary, given N training samples, {y,,x,|n =1...N},
where x,, is the nth feature vector and y,, its ‘target’
value, then a predicted target value for a new feature
vector x is based on linear regression amongst the
input vectors:

N
y(x) = Z wpk(x,%x,) + b 4)
n=1

where b is a bias parameter and k(-,-) is a ker-
nel function. The key element is that the individual
weights w,, are modelled as normally distributed,
whose values are found by maximising the evidence
with respect to the distributions” parameters. Many
weights tend toward 0, so the above reduces to a sum
over a much smaller number of ‘relevance’ vectors
from the training set (in our case over 95% reduction),
giving fast prediction. The probabilistic modelling
also yields an estimate of the variance (uncertainty)
for the prediction.

For classification, the target values are binary (plane
or non-plane) and so the prediction is transformed
by a logistic sigmoid, mapping to (0,1) — this is
interpreted as the probability of the input belonging
to the positive class, which is thresholded to obtain a
binary classification. For regression, the target values
are 3D orientations, so we need to use the multivariate
regression RVM developed by Thayananthan et al.
[33]. The input feature vectors are either histograms
or spatiograms of words or topics; for spatiograms,
we used a polynomial function for the kernel k(-,-)
applied to the similarity measure in (3), since in
our experiments we found it to perform better than
using this measure on its own; thus kg(S4,S%) =
Zqul p% 5, where we chose the maximum power Q to
be 4. The same kernel function was found to perform
well for both classification and regression tasks.

5 PLANE DETECTION

In this section, we describe the plane detection algo-
rithm, which identifies planar regions in images and
estimates their orientation. As illustrated in Fig. 4, we
do this by applying the plane recognition algorithm
at different locations over the image, and use this to
estimate planarity at individual points, and after clus-
tering and smoothing we are able to extract individual
planar structures. Example results from each stage are
shown in Fig. 5.

The recognition algorithm, as explained above, uses
a discrete set of points, and so the density of such
points determines the segmentation resolution that we
can expect. In effect, we aim to group these points
into planar and non-planar regions based on their
spatial adjacency and compatibility in terms of planar
characteristics; since these points are the centroids of
the image patches used to describe the image, our
point-based segmentation is effectively segmenting
the image itself. We present two versions of the algo-
rithm: first the method using DoG salient points, then
in Section 5.3 we show how a denser, regular grid at
multiple image scales can be used to increase coverage
of the image. Hereafter, ‘point’ is used to refer to such
a salient point or grid vertex as appropriate.

5.1 Location Sampling

The first stage of the algorithm is to apply plane
recognition (PR) (Section 4) at multiple overlapping
locations in the image, to sample possible locations
where planes might be. We use a set of up to 100
regions per image, centred over a subset of points.
These regions are circular with a fixed radius (50
pixels in the experiments) and all points within such a
region are used as input to one invocation of PR, giv-
ing planar/non-planar classifications (and orientation
estimates) at these locations.
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Fig. 4. Main steps of the plane detection method (using DoG salient points).

To gather a more appropriate training set for this
stage (the regions are a different size and shape com-
pared to Section 4), we use our whole-image ground-
truth data set (examples of which can be seen in Fig.
10), and extract circular regions of a given radius, in
the same way as for location sampling. Labels for the
regions are assigned according to the majority class
and mean orientation of the points within the region,
according to the ground-truth..

As illustrated in Fig. 4, after applying PR to these
sampled regions we obtain multiple recognition re-
sults for a given point, from all the overlapping
regions in which it lies, i.e. all those regions for which
it was used for recognition. After discarding regions
for which classification certainty is too low, we assign
a single class and (if planar) an orientation estimate
to the point: each point ¢ is given an estimate of its
probability of being on a plane, denoted r;, and of
its normal vector d;, which are calculated using the
median and geometric median to give a degree of
robustness to outliers. The result is an estimate of pla-
narity for each point, such as in Fig. 5b, which we refer
to as the local plane estimate (LPE). These pointwise
estimates are informative, but clearly do not constitute
a plane detection, nor are they necessarily accurate
— but they are sufficient for segmenting planes from
each other, as we describe next.

5.2 Segmentation

The goal of the segmentation stage is to take the points
in the local plane estimate (above), and separate them
into distinct planar or non-planar regions. This is
achieved in three steps: first, to cluster the labels
assigned to points to obtain a discrete set of assignable
labels; assign each point its most likely label; and then
to extract connected regions of points with the same
label. While a number of segmentation algorithms
could be employed to achieve this, the problem is
naturally expressed as a simple MRF on a graph
connecting the points.

The segmentation of planes from non-planes, and
into planes of different orientations, is done sepa-
rately, since different criteria are used for the two
stages (classification probabilities and orientation es-
timates, respectively), and they act on different sub-
graphs of the point set (orientations are usually not
defined for regions deemed non-planar). A joint seg-
mentation should be possible, but we present details
of the simpler model here.

For separating planes from non-planes, no cluster-
ing is necessary on the labels, since there are only
two possibilities, being 1 and 0, plane and non-
plane respectively. Each point 7 is set to the value
p; € {0,1} which is closest to its observed value r;
(the median of the sampled estimates, as above). To
extract contiguous regions from these points, a graph
is created, using either a Delaunay triangulation or
a regular grid, depending on the saliency type used.
To create a smoother segmentation, and deal with any
noise or anomalous assignments, we apply smoothing
based on iterative conditional modes (ICM) [2], so that
labels depend upon points’ observations plus their
neighbours’ labels. This is formulated as a simple
MRE: let p represent a configuration of the field, where
each node p; € {0,1} represents the label of point :.
We then seek the optimal configuration p*, defined as
p* = argmin U(p), where U(p) is the posterior energy
of the MRF:

= Vilpir) +ar Y. > Valpipy) ()

i€S i€S jEN;

where S is the set of all nodes and N are the neigh-
bours of node i. The functions V; and V5 are the single
site and pair site clique potentials, respectively, where
Vi(pi,ri) = (pi — r;)* and V> has value 0 if p; and p;
are equal, 1 otherwise, and «ap is a weighting param-
eter to balance the effects of the unary and pairwise
potentials. This MRF is easily optimised using ICM;
while more efficient alternatives such as graph cuts
exist [21], we find this simpler approach sufficient,
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Fig. 5. Outputs from plane detection: from the input
image (a), we apply plane recognition over the image
to obtain a point-wise estimate of orientation (b). This
is segmented into distinct regions (c), from which the
final plane detections are derived (d).

and it generally converges within a few iterations.
Thus each node is set to its most likely value (plane
or not), given the estimates from each of the sampled
regions and a smoothness constraint imposed by its
neighbours. Planar regions are extracted from this by
connected component analysis.

Subdividing planar regions based on their orienta-
tion estimates is a little more complicated, as the labels
belong to the continuous range of normal vectors,
rather than simply two classes. We deal with this by
making the assumption that the image consists of a
finite number of planar surfaces, consisting of sets
of nearby points which have the same normal (ie.
piecewise constant regions). We find the dominant
orientations using mean shift clustering [6], which
gives us the modes of the kernel density estimate
of the distribution of orientation estimates in the
image. Normal vectors are represented as two angles
(0, ), and a Gaussian kernel with a bandwidth of 0.2
radians is used (a value chosen by cross-validation
experiments omitted here due to space constraints).

After clustering, we can assign discrete labels to the
points, according to their observations. As above, we
also want to take into account the labels of neigh-
bouring points, to impose smoothness on the resulting
regions, so we again formulate the label assignment
as a simple MREF, defined on the subgraph comprising
only the points which were deemed to be in planar
regions, denoted by the set S’ C S. Similar to the
above, let n represent the configuration of this MRE,
with n; € R? representing the 3D normal at node
i. We wish to obtain n* = argmin_F(n) , where the
posterior energy E(n) is

Em) =Y Fi(ni,dj)+ao Y > Fa(n;n;) (6)
i€s’ 1€S’ JEN;

where both clique potential functions F; and F; return
the angle between two vectors in R3, and where d; is
the observed normal for point ¢ (the geometric median
of its regions’ estimated normals). ap is again a
weighting parameter. We generally set both weighting
parameters to be the same, ap = ap = 1; the effect of
this is discussed in Section 6.4.

After optimising this second MRF, we extract the
set of disjoint planar regions, formed from connected
components of the graph which were assigned the

same orientation label (if two disconnected regions
have the same orientation, they are considered dif-
ferent, but parallel, planes). These plane segments
are passed through the plane recognition algorithm
once more, to verify they are planar and update their
orientation, so that the final values are based on the
regions themselves, rather than the surroundings of
all points in the region. Generally, we find that the
orientations do not change substantially, suggesting
that pointwise plane estimates are a good approxi-
mation with which to segment planes. These regions
are no longer the same shape as the locally sampled
regions — we therefore train a second pair of RVMs
from data obtained by running the full segmenta-
tion algorithm on the original training set of ground
truth images, which will be more similar to the final
regions. This improves orientation accuracy of the
final planar regions by several degrees. Non-planar
segments are discarded, as are any segments which
are subsequently re-classified as non-planes (leaving
a set of non-planar points in the image).

5.3 Grid-based Detection

The method as described above (and in [14]) uses the
DoG saliency detector to select points in the image
around which to create descriptors, which is a conve-
nient way of avoiding regions with no texture. Unfor-
tunately, this prevents our method from working in a
number of situations, such as road surfaces with very
little texture information. However, there is no reason
why a different, denser set of points cannot be used.
We investigated this by replacing the DoG detector
by simply using all pixels in a regular grid. Using
every single pixel would increase the computational
burden significantly, so we compromise with a grid
with a spacing of ten pixels.

To retain the benefit of using image patches at
multiple scales, we use a multi-resolution grid, where
grids at a coarser scale use larger image patches. We
use four grids of different scales, each at twice the
separation of the level below (spacings of 5, 10, 20 and
40 pixels, for patch sizes of 10, 20, 40 and 80 pixels
respectively). The subsequent parts of the algorithm
operate in the same way, using descriptors for all
grid points which fall into a certain radius of selected
points to create sample regions, as before. We also
omit gradient descriptors in regions where there is
no texture, relying solely on colour. The main differ-
ence is that the Delaunay triangulation is no longer
required to create the graph — each point is connected
to its 4-neighbours. Furthermore, while patches at
larger scales are used for providing information to
the classifiers, it is not necessary to include these
duplicate points in the graph.

The effect of this modification on the algorithm is
that it is now able to extend to more of the image
(though we concede that in regions devoid of texture,
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accuracy is likely to fall), and thus addresses one of
the principal ways in which existing methods (most
notably [19]) achieve superior coverage of the image.

6 RESULTS

This section presents results of experiments to eval-
uate the proposed algorithms. First, we look at per-
formance of the plane recognition algorithm on in-
dividual image regions; before showing the results
of experiments to evaluate the full plane detection
method, both against our own ground truth data, and
by comparing with prior work.

6.1

The data we used for evaluating the plane recognition
algorithm consist of regions extracted manually from
images (we are not using the whole image), labelled
with the true class (plane or non-plane) and orien-
tation (normal vector), as described above. We used
two datasets, for training and testing. The training set
was used for cross validation, to evaluate the accuracy
and consistency of the method, and to investigate
performance using different representations and pa-
rameter values, before training the full algorithm. This
consisted of 556 regions captured by a 320 x 240 pixel
calibrated webcam: we use a relatively low resolution
camera to match our intended applications in real-
time SLAM [16], where image size has to be kept
small due to computational constraints. These images
were reflected, to give 1112 regions, and warped,
giving a total of 10155 regions (we do not test on the
warped regions, and ensure that warped versions of
a test region are never in its training set). The second
dataset, of 690 images, was gathered in a distinct
location to the first, to ensure there was no overlap,
with which we evaluate the generalisation ability of
our algorithm (having trained on the first dataset).
These images are of the same format and with the
same intrinsic camera parameters.

Plane Recognition

6.1.1 Cross-validation

In the cross-validation experiments we investigated
the effects of using different representations, features,
and vocabulary size. Statistics were obtained over ten
independent runs, each using 5-fold cross validation
(these comparisons use the mean orientation error and
its standard deviation, rather than the median). First,
we compared orientation error when using words,
topics, histograms and spatiograms as the vocabulary
size is varied. We used only the gradient vocabulary
and the reflected dataset (without warps) to make
the effects of the other parameters clear. As Fig.
6 shows, spatiograms outperform histograms, and
topics are beneficial, especially for larger vocabu-
lary sizes. Given that small vocabularies are likely
to constrain the method, these results confirm the
advantages of using topic spatiograms.

—— Word Histograms
—— Topic Histograms

Word Spatiograms |
—— TopicSpatiograms
. —

—

e

0 500

1000 1500 2000

Vocabulary size
Fig. 6. Comparison of mean orientation estimation
error using word and topic histograms and spatiograms
while varying vocabulary size.

Gradient Colour Grad. & Col.
Classification Acc. (%) | 86.5 (1.8) | 92.5 (0.5) 93.9 (2.8)
Orientation Err. (deg) | 13.1 (0.2) | 28.4 (0.3) 17.9 (0.7)
TABLE 1

Comparison of average classification accuracy and
mean orientation error when using gradient and colour
features. Standard deviations are shown in brackets.

We next compared performance when using gradi-
ent features and colour features. Table 1 shows that
classification using colour alone gives better perfor-
mance than gradient features, but combining the two
is better overall. However, as expected, colour is much
worse for estimating orientation, and combining the
two offers no improvement. Since we use separate
RVMs for the two steps, using different features is not
a problem, and so we maintain separate spatiogram
descriptors for classification and regression.

It may be thought that part of the success of
spatiograms is because they, unlike histograms, are

Cut Hist. | Cut Spat. Hist. Spat.
Class. Acc. (%) | 75.3 (1.0) | 84.4(0.9) | 77.3 (1.0) | 87.9 (1.0)
Orient. Err. 26.6 (0.2) | 17.0 (0.3) | 24.9 (0.2) | 13.3 (0.1)
TABLE 2

Comparison of performance for histograms and
spatiograms on regions cut to be uniformly circular,
compared to the original shaped regions.

35 %

30 %
25 %
20 %
15%
10 %

Percentage of regions

5%

0% . . . .
0 20 40 60 80 100 120 140 16

Fig. 7. Histogram of orientation errors for the recogni-
tion algorithm, showing that the majority of regions are
given an orientation estimate with low error.
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able to implicitly encode region shape, and that these
shapes, being manually defined by a human, may
offer cues to the orientation of the plane. This is a
problem, since for regions obtained in other ways,
such cues would not be available, and may bias the
classifier by falsely predicting planes due to coinci-
dental region shape. To investigate, an experiment
was carried out where all regions were cut to being
circular in shape. Spatiograms still significantly out-
perform histograms, for both classification and regres-
sion, as shown in Table 2 — while the cut regions ex-
hibit worse performance, there is still a clear increase
in performance when using spatiograms, indicating
the shape of regions is not a crucial factor behind the
benefit of spatiograms.

Non-planged
Carreet,

Fig. 8. Example outputs of plane recognition, show-
ing correct classification (a-j) and good orientation
estimation (a-g), plus some failure cases: poor ori-
entation estimate (k,l), misclassification as non-plane
(m,n), and misclassification as planar (0). Orange/cyan
boundaries denote ground-truth plane/non-plane re-
spectively; those classified as planes have green ar-
rows (estimated orientation), ground-truth orientation is
drawn with blue arrows.

For the final test with cross-validation, we used
gradient and colour and features for classification,
in vocabularies of 400/300 words respectively, and
gradient features only for regression, compactly rep-
resented with spatiograms over topics. We also added
the reflected and warped images, to supplement the
training set, which was previously found to improve
accuracy [13]. Cross validation was run ten times, and
we report the mean results. We observed a mean clas-
sification accuracy of 95% (standard deviation 0.49%)

and a median orientation error of 9.8°. We report
the median accuracy for orientation estimation, rather
than the mean, because this is more robust to outliers
and gives a better indication of performance when the
distribution is skewed. This is clearly the case here,
as shown in Fig. 7, which plots the distribution of
orientation errors. Some outlying regions have large
errors, but a significant number are under 15° (72%)
and under 20° (84%).

6.1.2 Independent Data

To evaluate the ability of the algorithm to generalise,
we use the second, independent dataset, gathered
from a different (but similar) urban location. While
there may be some coincidental similarity in appear-
ance, there is no overlap between the training and
test sets, unlike in the cross-validation tests. This
dataset consists of 690 image regions, divided equally
between planes and non-planes. In this experiment
we trained the algorithm using the full test dataset
from above, including the reflected and warped im-
ages, and used the settings described in the previous
section. The results we observed were an average clas-
sification accuracy of 91.6%, and a median orientation
error of 10.6°, suggesting that the algorithm is capable
of generalising well to new environments.

Figure 8(a-j) shows examples of successful plane
recognition, from the independent data. Correctly
classified planes and their orientation are indicated by
green arrows (ground truth is shown in blue) while
correctly identified non-planar regions are indicated
by cyan circles, including vehicles, foliage and people.
Note in particular the variation in appearance of the
planar regions, including both regular and irregular
texture, demonstrating the generality of the algorithm.

We also show some examples of where the algo-
rithm fails Fig. 8(k-o). These include a mix of poor
orientation estimates and false positive and negative
classifications, due either to insufficient texture or
ambiguity in line orientation, for example. However,
these are in a minority; most regions are accurately
classified, with low orientation error.

6.1.3 Comparison to KNN

We note that it is possible to replace the RVM with
K-nearest neighbour (KNN) classifiers, finding neigh-
bours using the spatiogram similarity measure. In
cross-validation experiments, we obtained a mean
classification accuracy of 92% and a median plane
orientation error of 10.7°, close to that reported above;
although because it is necessary to compare with all
the training examples, the KNN is too slow to use
in practice. Nevertheless, this is interesting since it
confirms the success of the method is not due to
some property of the RVM, but because the features
and similarity measures we use are able to match
appropriate structures. Further details and examples
can be found in [13], [15].
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6.2 Plane Detection Results

This section describes the experiments we performed
on the plane detection algorithm. For these experi-
ments, we use two datasets: the training set, compris-
ing 439 images taken from urban locations, including
many examples of both planes and non-planes; and
an independent test set, of 138 images from a separate
urban location, such that there is no physical overlap
between the two. This is an expanded version of the
data previously used in [14], so results may differ. We
have made these data available online! to facilitate
future comparisons.

Percentage of regions
Percentage of regions

120 100 120

20 40 0 8
Orientation error (degrees)

(b) Grid

2 40 w0 s 0
Orientation error (degrees)

(a) Saliency Detection

Fig. 9. Distribution of orientation errors for plane
detection on previously unseen data.

When testing on the independent test set, we ob-
tained a mean point classification accuracy of 83.6%,
and a median orientation error of 16.2°, measured
over the detected regions (the distribution remains
heavily skewed toward lower errors, as seen in Fig.
9(a)). Note that unlike in the plane recognition case
(Section 6.1), the test and training regions are no
longer guaranteed to be wholly planar. As such we
believe these detection results are very reasonable
given the difficulty of the task and that no explicit
use is made of geometric information.

We also measure how much of the image is covered
by the detection. This value is calculated as the total
area of the image, in pixels, which falls under any of
the patches used to create descriptors. This is useful
for evaluating how capable the detection algorithm
is of finding planes from across the whole image;
and also emphasises the point that we are not sim-
ply labelling individual points, but grouping together
regions of the image. In this experiment, we measured
a coverage of 75%.

Figure 10 shows a selection of results, alongside the
intermediate local plane estimates (Section 5.1) and
ground truth. Example 10(c) shows that it is quite
capable of detecting planes in environments where
there are dominant vanishing lines; but example 10(d)
is important since it shows it can also cope in the ab-
sence of any obvious geometric structure, where such
methods would fail. Note also Fig. 10(b) (and Fig. 1),
where non-planar areas are successfully segmented
from the planar surfaces.

1. Our dataset can be found at www.cs.bris.ac.uk/ haines

11

Plane Det.

EH

Fig. 10. Examples of plane detection. In the ground
truth, red regions are planes, blue are not. In the de-
tection results, groups of planar points are enclosed in
coloured regions, displaying their orientation; individual
coloured points are non-planar.

We also show some examples where our algorithm
fails. Figure 10(e) shows an example where one plane
has been split in two, and extends over the ground
plane, while Fig. 10(f) shows the ground plane being
completely missed, and planes on the right being
given the wrong orientation.

6.3 Multi-resolution Grid

In Section 5.3 we described an alternative method of
performing plane detection, by using a dense multi-
resolution grid of points instead of DoG saliency
detection. This allows the method to cover much more
of the image, including potentially featureless areas.
To compare this with the original version, we evalu-
ated this new algorithm on the independent dataset. It
gave a classification accuracy of 81.6%, and a median
orientation error of 16.3° (histogram of errors in Fig.
9(b)). These results are a little worse than the DoG
method, but we believe this constitutes good perfor-
mance — especially since this means the detection is
now covering almost the entire image (94% by area).
Since we can now cover almost the entire image, we
can calculate performance measures for plane detec-
tion itself, in terms of precision and recall. Precision
is defined as the proportion of detected planes which
are true detections, i.e. those for which at least 70%
of their points are in ground truth planes. Recall is
similarly defined as the proportion of ground truth
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Truth Grid

Input

Saliency

Fig. 11. Examples of using the grid-based whole-
image method, compared to ground truth and the
original saliency-based version.

planes which are successfully detected, where a suc-
cessful detection is one for which at least 70% of its
points lie within a detected plane. For this experiment,
we obtained a precision of 0.89 and a recall of 0.67.

To illustrate the effect of this alternative method, we
show example results in Fig. 11. Some regions which
the original algorithm misses (especially surfaces of
roads) are indeed detected as being planar, and can
be given correct orientations, as shown in Fig. 11(d)
for example. The resulting detections give a more
complete description of the image, giving a better
sense of the structure of the scene, as in Fig. 11(b).

In other instances, this new algorithm fails, and
spreads planes across inappropriate regions of the im-
age, or assigns a visibly erroneous orientation. Figure
11(e) shows many wrong planes across the image,
while the more conservative DoG version gives the
better result. In Fig. 11(f) the grid-based version has
successfully found the road surface, but the two faces
of the building have been merged.

Despite this, it is clear from the examples given that
the grid-based detector can offer some advantages
over the original, and may be beneficial in some
situations where area of coverage takes precedence to
metric accuracy. This difference is also useful when
comparing to existing methods.

6.4 Smoothing

In Section 5.2 we discussed how a MRF can be em-
ployed to smooth the assignment of planarity and ori-
entation labels to the points, before extracting regions.

(a) With smoothing

(b) No smoothing

Fig. 12. The effect of smoothing with iterative condi-
tional modes — taking point neighbourhoods into ac-
count creates regions with smoother boundaries, and
avoids isolating small groups of points.

The parameters ap,ap control the relative influence
of the unary and pairwise terms on the smoothing.
In our experiments, we found that different non-zero
values have very little influence on the result. If we
set ap = ap = 0, this removes the influence of
neighbouring points on the segmentation, essentially
removing the MRFs. This gives similar results, but the
regions are less smooth: as Fig. 12 shows, boundaries
are more jagged without smoothing, and some pixels
are left out of any regions. It is an interesting aspect
of our method, that even if the MRF is removed
completely, plane and non-plane regions can still be
detected simply by analysing connected components
in the graph, due to the processing performed before
giving the data to the MRE. However, while using
the MRF does not significantly affect the accuracy
measures quoted above, it does lead to an improved
presentation of planar regions, which could be advan-
tageous when using these regions in other tasks [16].

6.5 Comparison to Prior Work

As outlined earlier, a common way to achieve plane
detection is to use cues such as vanishing lines and
rectilinear structure; however, we do not compare
to these since they operate in very different ways
and only under limited conditions. While they may
give superior estimates when sufficient orthogonal
structure is present, but are likely to fail in more
complex scenes (for example in Fig. 1).

The closest prior work is that of Hoiem, Efros and
Hebert [19] (henceforth we shall refer to this as HEH),
where planar surfaces are detected using a variety
of features, in a machine learning framework. Un-
fortunately, comparison to this is not straightforward,
since the two algorithms are very different in their
intentions. HEH does do a form of plane detection
(which is simple enough to compare); but it does not
estimate the orientation of planes, instead categorising
them into a discrete set of orientation classes.

We continue to use the percentage of points as-
signed to the correct class as the measure of classifica-
tion accuracy, but to measure orientation estimation,
we alter our method to quantise the orientation es-
timates into the same classes. We compare HEH to
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ours by measuring accuracy only at the points we
use (the DoG points, or the regular grid), since we
cannot compare our algorithm at every pixel. This
quantisation undoes one of the main benefits of using
our method, so such a comparison of accuracy is
not necessarily meaningful. Nevertheless, we present
such a comparison as a useful visualisation to the
reader of the ways in which the two algorithms can
be made to perform a similar task.

To run HEH on our data, we used Matlab code
provided by the authors®’. We used this to re-train
their classifiers on our training set, after quantising
orientations to discrete classes (note that we do not
have annotations for the ‘porous’ or ‘solid’ classes,
and set everything non-planar to ‘sky’). We found this
gave better performance on our data than the pre-
trained classifiers they provide.

We compared HEH to both versions of our method,
using salient points or the dense grid. We found
that the two did indeed perform similarly, with HEH
achieving accuracies of 89% and 84% for plane and
orientation classification respectively, compared to our
grid-based method at 83% and 80%. Using the DoG
method, we achieved a similar accuracy, of 84% and
80%, which is almost exactly the same as theirs when
sampled at the same points, suggesting that focus-
ing on more highly textured locations benefits our
method. Their method appears to out-perform ours by
up to 5% in accuracy, though we emphasise that the
algorithms are set up to do very different things, and
this test shows our algorithm is able to perform a sim-
ilar task to their method, even though it was designed
for something different. We also highlight that our
method achieves relatively better performance when
focusing on textured regions, and that we can opt to
detect planes over the entire image, but at the cost of
accuracy.

Figure 13(a) illustrates how we re-interpret the out-
put of HEH to show plane detection results, for a
clearer comparison: we treat classification into sky,
porous or solid classes as being non-planar, drawn in
blue; and the others (left, right and forward subclasses
of vertical, and the support plane) are planar, which
are drawn in colours according to their orientation,
with arrows overlaid to show orientation. We display
our results and ground truth in the same manner,
as Fig. 13(b) shows, where colours and symbols sur-
round each (grid) point, and our orientation vectors
have been quantised into the nearest orientation class.

Example results are shown in Fig. 14, comparing
our grid-based method (we found this to be much
better able to approach the kind of whole-image seg-
mentation offered by HEH, due to its greater image
coverage) to HEH and the ground truth. Our method
appears capable of performing a very similar kind of
orientation classification to HEH, although it performs

2. www.cs.uiuc.edu/ dhoiem/

Fig. 13. lllustrations of how the output of HEH (a)
and our (grid based) method (b) are re-drawn to show
quantised plane detection.

it in a different way. In some cases, our method is
better able to deal with large planes (e.g. Fig. 14(b));
and by being able to estimate orientation, somtimes
distinguishes planes of different orientation, whereas
HEH may merge them together, like in Fig. 14(a). On
the other hand, HEH is better able to deal with small
or distant regions (Fig. 14(e)).

Truth

Input  Ours (grid)

Fig. 14. Some example results, comparing our grid-
based algorithm to HEH and ground truth.

7 CONCLUSIONS

We have shown that it is possible to learn the rela-
tionship between appearance and structure in single
images, and presented a new algorithm to detect
planes, which can for the first time estimate a 3D
orientation. The approach comprises a method to
estimate the planarity and orientation of individual
regions, based on learning from a training set. This
is then used in a plane detection algorithm, that does
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not require a priori region segmentation or knowledge
of plane boundaries. Our algorithm can detect planes
with good accuracy compared to labelled ground
truth, and gives comparable segmentations to the
most similar work [19].

The plane detection works by repeated sampling of
windows to recover individual planes; however, this
makes it unable to deal with small planar regions.
An avenue of future work, therefore, would be to
incorporate edge or contour information, which can
be beneficial in scene layout estimation [20]. A similar
technique could also be applied to relative depth
estimation [32] — to improve the fidelity of plane
detection, or to use alongside plane detection for more
sophisticated interpretation of images.
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